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Influence of noise on chaotic laser dynamics
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The Nd:YAG laser with an intracavity second harmonic generating crystal is a versatile test bed for concepts
of nonlinear time series analysis as well as for techniques that have been developed for control of chaotic
systems. Quantitative comparisons of experimentally measured time series of the infrared light intensity are
made with numerically computed time series from a model derived here from basic principles. These com-
parisons utilize measures that help to distinguish between low and high dimensional dynamics and thus
enhance our understanding of the influence of noise sources on the emitted laser light.
[S1063-651%97)10805-4

PACS numbes): 05.45+b, 42.50.Lc, 42.65.5f

[. INTRODUCTION our previous study was that while the type | behavior was
established to be low dimensional, there was clear evidence
The Nd:YAG (neodymium doped yttrium aluminum gar- that the type Il behavior was significantly influenced by
nef laser with an intracavity KTRpotassium titanyl phos- noise, indicating the presence of high dimensional dynamics
phate crystal is a chaotic dynamical system for which it is as well. At the end of that paper we sketched the outline of a
possible to directly compare statistical aspects of measurettieoretical approach to the derivation of a model that would
time series with predictions from a numerical model that hasllow us to simulate intensity time series and apply the non-
been derived from basic theory. When operated with three dinear analysis techniques to make a direct comparison with
more longitudinal cavity modes, this laser is known to dis-the experimental results.
play chaos, and attempts have previously been made to write In this paper we present the derivation outlined@h and
dynamical equations that could capture certain aspects of olmbtain the equations that describe the dynamics of a three
served behaviofl—-3]. These models have successfully pre-mode laser with an intracavity KTP crystal. Previous models
dicted the existence of antiphase dynamical states, enerd{—3] were found not to reproduce type | dynamical behavior
sharing of chaotic polarization modes of the laser, and alsafter conducting extensive searches in parameter space. It is
the possibility of obtaining stable operation through rota-shown here that the inclusion of nondegenerate four wave
tional orientation of the KTP and YAG crystals. The lasermixing, which leads to a model that includes the phase dy-
system has also served as an example of which algorithmsamics of the electric fields, overcomes this difficulty. Type
for the control of chaotic lasers have been successfully apH behavior of the infrared light has very different character-
plied, both experimentally and in numerical simulationsistics, and is accompanied by emission of substantial
[4-7]. amounts of green light, in contrast to type | dynamics. De-
It was, however, the observation that simple control algo-generate four wave mixing is the dominant process in this
rithms failed in certain operating regimes that motivated uscase. A major purpose of the research reported here is to
in a previous paper to apply methods of nonlinear time seriemclude noise sources appropriately in the numerical equa-
to experimentally recorded intensity time series with the goations and to explore their influence on type | and type I
of discovering qualitative and quantitative differences in thedeterministic chaotic dynamics.
operating regimes. The laser was thus operated specifically The next section reviews the main aspects of type | and
in three longitudinal modes in two polarization configura-type Il chaotic dynamics of the laser. The experimentally
tions by careful adjustment of crystal orientations in the cav-observed differencegtime series behavior, controllability,
ity. In the first configuration, all three longitudinal modes mode structure, and green output poware summarized.
were polarized parallel to each other. In the second, on&e describe a noise measurement method called false near-
mode was polarized orthogonal to the other two. All otherest neighbors, an algorithm normally used to find the embed-
parameters of the laser system such as the cavity loss, punading dimension of a chaotic time series. We demonstrate that
level, etc. were maintained constant, and the instrumentatiothe two types of dynamics differ significantly in the amount
for the measurements was operated with exactly the sama high dimensiona(noisy) dynamics of the laser. Section Il
sampling times and other settings. provides the basis for comparison with numerical computa-
The dynamics observed in these two polarization configutions that are the focus of this paper.
rations were labeled type | and type Il. Nonlinear time series Section lll contains a derivation of the model equations of
analysis allowed us to determine the dimensionality of themotion from a Hamiltonian. Three infrared cavity modes are
chaotic attractors for the two cases and estimate thenodeled as harmonic oscillators coupled to heat baths. A
Lyapunov exponents in the two cases. A major conclusion ofnode that represents green light generated by the KTP crys-
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tal is also included. It is nonlinearly coupled to the infrared (a)
modes so as to model the interaction in the KTP crystal. The 256
cavity loss for the green light is very high compared to that

for the infrared modes, hence it is sufficient to just consider 224
a single mode of green light and to eliminate its dynamics
from the final set of equations that describe the evolution of
the field amplitudes of the infrared modes and of the popu-
lation inversion of the two level atoms that drive them.

In Sec. IV we describe the results from numerically inte- il
grating the equations of motion derived in Sec. lll. There is Al l
a qualitative match between the wave forms of the model ‘
and experimental data in both chaos regimes. We alsc 64 l il U ‘ iAo i
present the false neighbors results when noise is added to tt I};‘ ‘ il |

Laser Intensity

system and find that the resulting noise in the output inten- 32

sity differs in the two chaotic regimes for the same input

noise, leading us to conclude that the susceptibility of the % 500 1000 1500 2000
dynamics to noise differs for the two chaotic behaviors. Time (microseconds)

Section V attempts to locate the source of noise that is b
seen in the laser time series. Four intrinsic quantum fluctua 2(56)
tion sourcegcavity loss of infrared light, cavity loss of green
light, intrinsic conversion noise, and spontaneous emigsion 204 |
are analyzed for their expected noise levels. These nois
sources are all too weak by many orders of magnitude tc
contribute the amount of noise evidenced in the laser dynam
ics. We also consider and eliminate extrinsic pumping fluc-
tuations as the noise source.
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Il. TYPE | AND TYPE Il BEHAVIOR

=3
X
T

The basic elements of the laser system are a diode lase
pumped Nd:YAG crystal and an intracavity KTP crystal with
an output mirror that is highly reflecting at the 1.06# line

[
n

of the Nd:YAG crystal but highly transmitting for the green 0 560. .1oloo 1500 2000
light [1]. It has been shown that this laser can be configurec Time (microseconds)

so that few modes~3—10) are present in the cavity; each

mode can have one of two polarizations. FIG. 1. (@) Fluctuations of the total infrared intensity for three

Using the methods of nonlinear time series analy8is mode Nd:YAG laser operation with all modes polarized parallel to
we are able to distinguish between chaotic behavior whereach other. Relaxation oscillations of periedl6 ws are evident
the noise level is very low and situations where the output igvith irregular modulations of the envelope, typical of type | dynam-
still chaotic but substantial noise is also present. The formei€s- (b) Fluctuations of the total infrared intensity for three mode
we call type | chaos; it is observed when all three modes alNd:YAG laser opergtion with two modes polarized parallel to each
polarized parallel to each other. The latter we label type [[other and one polarized perpendicular to the other(tyjoe Il). The
chaos; it is observed when one of the three modes is polafé!axation oscillations are still visible.
ized perpendicular to the other two. Very little green light is _ _ ) )
generated for type | behavior, which is demonstrably lowstoring 16 samples. In Fig. () we show the total intensity
dimensional chaos, and is controllable by the method of ocwhen all three modes are polarized parallel to each other
casional proportional feedba¢®PP [4,5]. Type Il chaos is  (type | chaos In Fig. 1(b) we show the total intensity with
accompanied by the generation of a substantial amount ¢ine mode polarized perpendicular to the other tiype II

green light and a clear signature of noise is evident in it$haos. o

chaotic dynamics. It is typically not controlled by OPF. In the tm_1e tracgs we can see the _dlstmctlon between these
The laser system displays chaotic intensity output whedWO operating regimes. Type | consists of long “bursts” of

operated with three or more longitudinal modes. In therelaxatlpn oscillations, vyhlle type Il appears.far more irregu-

present experiments the system parameters were adjusted!&- During type I operation very little green light, less than 1

obtain three mode operation in the two distinct polarization«W, was observed, while more than 28N of power in

configurations. An appropriate orientation of the crystal axe@reen light accompamed.type II"activity. _

allowed us to select these configurations. The pump level, set We use the total laser intensit{n) =1(to+ nrs), with the

to about twice the threshold pump power, was similar for thesampling timer,=100 ns, and its time delayed values to

two configurations. The total intensifthe sum of the inten-  reconstruct the system phase spg@e12 by forming vec-

sities of each individual modevas observed with a photo- tors

diode having a rise time of less than 1 ns and was sampled

using a 100 MHz eight bit digital oscilloscope capable of y(m)=(l(n),I(n+T), ... I(n+(dg—1)T)), (1)
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y(n+1)=((n+1),I(n+1+T), ... I(n+(dg—1)T+1))

)

wheredg is the integer embedding dimension of the recon-
structed phase space ands the integer time lag in units of
7s. Our ability to use this phase space reconstruction for
extracting physical properties from the observations rests ol
a proper choice of the time deldy and the embedding di-
mensiondg . For T we use the first minimum of the average
mutual information[9,10,13 betweenlI(n) and I(n+T)
evaluated as a function df.

de is chosen by using the false nearest neighbors algo

Percentage of False Neighbors

rithm [14,9,10. This relies on the property of autonomous 0 : ; . % ; %
dynamical systems that their trajectories in phase space d . . )
not cross each other unless the system is observed in a spa Embedding Dimension de
with too low a dimension. To determine tlg necessary to (b)
unfold the trajectories using time delay coordinates we ob- 9.0
serve each point along the trajectoyyn) and its nearest 2 J‘]
neighbor as the dimension of the space is increased fron S80T.
dg tode+1. If the point and its nearest neighbor move suf- '5; 70
ficiently far from each other as the dimension is increased %’
we conclude they were falsely seen to be nearest neighbol ¢ 60
because of projection from a higher dimensional object, the -g 50
attractor. When the percentage of false nearest neighbor L o - o &
drops to zero, we have established the valuégof Here, we 5 40
use the property of the algorithm that in the presence of noist 830,
[9,10], a residual percentage of false nearest neighbors i -g
i . . 20|

observed. The amount of residual is a measure of the nois &
level. 10}

The original data sets of $0points were oversampled. & .

o
o
N

These were down sampled by a factor of 8, resulting in 5 .8, .7
125 000 data points. Using the time delay suggested by th Embedding Dimension d
average mutual information, we evaluated the percentage of
false nearest neighbors for types | and Il chaos. This percent- FIG. 2. (&) The percentage of false nearest neighlt&isN) vs
age averaged over five type | data traces is shown in Eay. 2 the embedding dimensiaf: averaged over five type | chaotic data
(solid line) and enlarged in Fig. (®). We see thadg=5 sets(solid line) and four type Il chaotic data sefsroken ling. (b)
where the percentage of false nearest neighbors drops wél enlargement ofa) showing that the percentage of type I FNN
below 0.5%. The dotted lines in Figsi@ and Zb) represent drops to 0.1% and stays theredsincreases but the percentage of
the corresponding average over four type Il data sets. [f¥YP€ !l FNN does not drop below 4%.
these data it is clear that there is a residual number of faISﬁ . .

conv Models the conversion of IR to green and vice versa

neighbors that is not eliminated by going to higher embed- . X
ding dimensions. We have consistently observed this muc at‘t ocm;rs;r:n t:\e K'll'P clrystal, anﬂdfi‘t’iﬁg trkr:od_elfs thedlnter-_
larger fraction of residual false nearest neighbors for type IPCOI((J)enS of the two level system wi e Infrared cavity

dynamics compared to type | dynamics in the many tim . :
series of total intensity from our laser system. In fact, the The Iotn%ltgld&r;]al mfrghr?dt.normzl modtgs in the Iase(rj are
mean type |l residual is=40 times the mean type | residual represented by the annihilation and creation operatoen

aﬁ, respectively. These satisfy the usual equal time Bose

atdg=6.
Tlfable | contains a summary of the differences betweeffommutation relations
type | and type Il chaos as found from experimental mea- TABLE I. Type | and type Il chaos summary.
surements and from the nonlinear analysis of the data.
Characteristic Type | Type Il
Ill. MODEL OF THE PROCESS Time series Bursting Irregular
The laser is modeled using three interacting componentG:reen OUtPUt ) <1uW =25 uW
the infrared cavity modes, a green cavity mode, and a tw ode configuration 30 2-1
level active medium. We write the whole Hamiltonian as OFF controliable Yes No
Embedding dimension ~5 ~5
False neighbors residual <1% ~5%

H=H IR+ ngeen+ Hconv+ H2 Ievel+ Hdriving . (3)
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[a, ,a:n]=5mn, nm=12,... M. (4) In addition, it can be shown that
For us,M=3. S.(2)$3(2')=+S.(2)8(z—7"),
Each mode is coupled to independent heat baths or reser- o )
voirs which are represented by boson operatgsfor the S:(2)S_(2")=3[1+S3(2)]8(z—2"). (14)

kth reservoir mode of infrared mode This harmonic oscil-
lator has a frequency of);,. We assume that all of the
reservoir modes are independent of each other and the infr

The two level system is damped by a cavity mode reservoir
Lepresented by boson operatdrg, and b;rk. The Hamil-

red modegexcept through the couplingthat is tonian is
toq_ Llhw )
[bgn,Dhml = Smndpg ®) H lever= fo{ 5 Si(2)+ 3 [T (2)S.(2)bs
and
[bon.al]=0. 6) —iAT3(2DLS (2]} dz+ X A gbibe.
The reservoir modes are bilinearly coupled to the infrared (15

modes with real coupling constarfs,, which leads to
The coupling between the medium and the cavity modes is

M M . .. .. .
bilinear and the driving efficiency; is assumed to be real:
H|R=i§1 ﬁwia?aﬁzl Ek [AQibikbi y I
L
AT (byal —abl)]. (7) H driving= jo 'ﬁizl ai[S;(2)a;sin(K;z)
There is a single green mode represented by annihilation and —aiTS_(z)sin( K,z)]dz. (16)

creation operatorg andg’ that satisfies
N A derivation of the equations of motion for this system

[9.9']=1 (8)  can be found in the Appendix. Here we give an overview of
the physics of the model and the approximations that are
made in the derivation.

[g,al]1=0. 9) First we use the Hamiltonian to determine the standard
Heisenberg equations of motion for the system. The reservoir

It is bilinearly coupledvia real coupling constantsy,) toa ~ Model allows us to apply the Wigner-Weisskopf approxima-

reservoir that is independent of the infrared mode reservoirdion (see Appendix and Chap. 19.2[df5]) to write a Lange-

The kth reservoir mode of the green mode is represented a4n equation for the green mode:

by and has a frequency ddy,. The green mode Hamil- M

tonian is -
T —(ygtiwg)g— |n§1 Kim@8m

and

Hoeer= A g9 g+ > [AQq bl b
green g g kPgk _
k i -3 Tgbgd0)e 1%+, @
+iAT g bgg "~ gbg) 1 (10
) where y, represents the damping rate and the last term is a
In the KTP frequency conversion process, modeled byyctuation or noise term. Integrating this equation and taking
Hconvs CONversion occurs when two infrared photons are deadvantage of the fact that the decay rate (=10'°Hz) is

stroyed to create a green photon and when one green photghych faster than the characteristic rate at whjdtuctuates
is destroyed to create two infrared photons. We assume the 5 Hz), we can find an equation for the green mode:

coupling tensolk;; is real and symmetric:

M
1
M
. g=—— 2 Km@am+ g, (18
HconVZIﬁijzzj_ Kij(ara}g—gTajai). (11) Yg I.m=1 m m 9
. ) o ¥vhere 74 is a dimensionless fluctuation term

The laser driving system is represented by a distribution o
spin-1/2 systems along tteeaxis over the length of the laser T gbgi(0) _
cavity. The Pauli spin operatorS;(z,t) and S.(z,t) are Ng=— We*'%k‘. (19
used to represent the two level systems and satisfy k' Yg g “Ugk

[S4(2),S.(2')]=*2S.(2)8(z—2') (12) The green mode is seen here to be “slaved” to the infrared

T - dynamics; namelyg(t) is determined solely in terms of the

and infrared modes and fluctuations associated with its coupling

to the external world. The use of a single green mode opera-
[S:(2),S.(2')]=S3(2)6(z—27"). (13)  toris justified as the green light escapes from the laser cavity
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and its dynamics is not observed. In what follows, we shall dsS;(2) ‘
see it acts as a damping factor, and the detailed mode struc- ~ —;— =2A — 271 +S5(2)]-2[S.(2) 75(2)
ture is not important.
We do the same with the infrared reservoir and infrared M
equations of motion and substitute in the green evolution - ns(z)S,(z)]JrZZ oi[ S;(2)a
equation to get =1
dA , +a'S_(z)]sin(K;z). (24)
1
ot AT Ve |§:1 Kij KimA AAm A constant population inversion/2 has been added to ac-
v count for optical pumping. Further manipulations and asso-
M _ _ ciating the operatorS;(z) with the population inversion
+221 Al nge! @it ety pelat n(z), we find and equation for the population inversion of
= the laser,
L
— | oFe“ls_(z)sin(K;z)dz 20 M52
fo | s A L W n@, 47 AAsK),
dt i =1 o !
The noise ¢; and 74) and damping ¢; and yg) can be (29

related through a fluctuation-dissipation relation, which we . .
derive in a Ia?er section P where; is the fluorescence decay time of the Nd:YAG me-
Now we turn to the two level system equations of motion.diUM (240 us) andn is the mean population inversion.
Although the Nd:YAG laser is actually a four level system, After substituting the driving terms into the field equation
this model works well for determining the equations of mo-We 9t
tion. It fails when computing the spontaneous emission noise dA 5 M
power, so we compute this power in another way. In the e A — D KinImAjTAIAm
meanwhile we will ignore all noise contributions from the dt Ygilim=1
two level system. M
The equations of motion are found again, and we formally f i@t o)ty o Aot
integrate the reservoir operators, substitute them into the +2j21 Ajmge T e
S, (2) equation of motion, and make the Langevin approxi- 5
mation to get o [t
g +WJ‘O sirf(K;z)n(z)dzA . (26)
ds. (2) | ’
g~ (T t0)S. (D)4 7(2)S4(2)

We have identifiedh(z) here. At this point we recall that the
number of photons in the cavity is large £1Gand treat the
guantum mechanical operatofg and AiT as if they arec
numbers.
Since we now have a partial differential equation for
At this point, we note that the Nd:YAG laser is a classNn(z), we break this equation into the component normal
B laser and its polarization decay rate is much higher thamnodes as described in detail i8]. To do this, we define a
s because the polarization of the active medium is affectednode gainG; as
by the surrounding crystal lattice. For Nd:YAG;r;1 is ap-

M
_Zl oFal'Sy(z)sin(K;z). (21

2
prfo;d_mately 240 us. The actual polarization decay time Gi=2|0i| TCJLn(z)sinz(Kiz)dz, @27)
Y, is on the order of 10" s. Nyp, Jo
So we substitute the faster decay raggfor ys and ignore ) ) o
the associated fluctuations. where 7., is the round trip cavity time of the las¢®.2 ns.

In the interaction frame moving at the driving frequency ASSUMIng than(z,t) separate into time and space compo-
wy e find that the driving terms are slaved to the populatior’€Nts We can write down equations for the mode gains in-
inversionS;(z) due to the high polarization decay rate. In a Stead of the population inversion. After rescaling the equa-
way similar to the method used to determine the green modhions so that the electric field has measurable units we obtain
equation of motion we determine the driving terms to be M

27'(;{ }

dE, .
T =5 (Gi_ai)Ei—fj l;:l Gij&imEj BiEm

1 M _ dt
S.(2)=—— 2, ciale”'IsinK2)Sy(2), (22
Yp =1 M h

. w .
2K 2, {Ef pge et et St
M j=1 Tc
Sy(2) o
S_(2)=— y Zl o;a;e'?d'sin(K;z). (23 (28)
p =

. ) . de 1 M
We now take theS;(z) equation, substitute the reservoir L — G 1+2 IE2 29
. . : . pi i _ :8|J| J| . (29

solutions, and perform the Langevin approximations. dt =1
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At this point we make use of an earlier model of the laser TABLE II. Model parameters.

3]:
(3] Parameter Value Description
ZTC%:(Gi_ai)Ei_fg|Ei|2Ei_2€2 i [EjI°E; Te 02ns Round trip
j#i cavity time
(30 T 240 us Fluorescence decay time
4G M of Nd:YAG
[ a 0.01 Cavity loss factor
TfW:pi_Gi 1+J—21 ﬁ”|Ei|2)' (31) €ijki See Tables Ill and Tables IV Four wave mixing
efficiency
where uj;=g. if the modes are parallel polarized and pi 0.02 Pumping power
wij=(1—gc) if the modes are orthogonally polarized. Thesegi; See Tables Il and IV Cross saturation
values ofu;; have been determined 8] after consideration parameter

of the phase-matching conditions for the intracavity KTP
crystal in the presence of the polarized modes of the laser o ) _ )

field. Notice that Eq(30) is a special case of E8) having | andj in units of inverse watts. Thes_e values are different
the terms wheré=k and j=1 (or i=1 andj=k). This is  for type I and type Il chaos and are discussed below.
called degenerate four wave mixing. Matching coefficients in

the degenerate case, we find that= \/g. when modes and
j are parallel polarized andi; = \;1—gc when they are per-
pendicularly polarized.

IV. NUMERICAL INTEGRATION RESULTS

These model equations were numerically integrated using

a standard stiff integrator from the Los Alamos CLAMS li-

We expect that 'Fhe Qegenerate and nondegc_anera;e fOHFary with a time step of 100 ns. The reservoir noisevas
wave mixing rates differ in the different laser Conf'gurat'ons'simulated by adding a complex Gaussian offset with a vari-

'!'ype .I chaos exhibits nondegeneratg four wave mixjng Withance of 10* W to the electric field of each mode between
little, if any, degenerate four wave mixing. This implies thatintegration steps

the green photons never have a chance to leave the cavity

: ; . Vit Type | behavior is obtained in numerical integration when
before being downconverted to infrared again. The OpPPOSIte); modes are polarized in the same direction and no nonde-

IS tlruf for tyhpe . (_:ha?s wgere the green ;;hotons immediy enerate four wave mixing is present, as shown in Table III.
ately leave the cavity. In order to separate these two cases, it o ghsence of degenerate four wave mixing is consistent

is necessary to define a four wave mixing tensqi where i the experimental absence of measurable green output.
i . Figure 3a) shows a type | time trace obtained by numerical
€adijda T i=kandj=| integration of the equations. The bursting behavior and the
€qijli  ifi=landj=k (32) relaxation oscillation period echo the experimental type |
enlijln  otherwise. data in Fig. 1a). o _
An approximation to type Il behavior is obtained when

degenerate four-wave mixing dominates over nondegenerate
Here, ¢4 is the degenerate four wave mixing rate andis  four-wave mixing as shown in Table IV.
the nondegenerate four wave mixing rate. We see that Eq. Note that the factorg;; in (32) are all equal regardless of
(28) is a special case where the two rates are identical whilgyhether mode and modej are parallel or perpendicular.
Eq. (30) is the case when there is only degenerate four wav@he predominance of degenerate four wave mixing is con-

€jjkl

mixing and no nondegenerate four wave mixing.
The equations we numerically integrate are

sistent with experiment; with type Il behavior we observe a
high amount of green output. An example of a type Il time
trace obtained from numerical integration is shown in Fig.

dg;, 1 v , 3(b).
at 2, (Gi— ai)Ei_j’kazl €ij E; ExEl |+ 7,
(33 A. Data preparation
" In our previous papel8] we discussed the digital signal
dG, 1 ) processing methods we used to extract more resolution from
o PTG 2 ARl @

TABLE IIl. Type | model parameters.

In these equationis=1,2,...,M. We have lumped all of the

. - . . . S Type | chaos

noise terms into the single additive noise teg This is ype |
. N o . Parameter Condition Value

possible because the multiplicative noise in E28) is much
smaller than the additive noigeee below €ijki i=k andj=I ow?

We use the parameters shown in Tablee}], is the four i=l andj=k ow?
wave mixing efficiency in inverse watts and has a magnitude Otherwise 2.x10° 8w !
on the order of 10° W ~*. It depends on the mode configu- g, i= 1.0wW?
ration and the relative orientations of the Nd:YAG and KTP P #] 0.6 W1

crystals.B;; is the cross saturation parameter between modes
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storage capacity and the sampling time of the oscilloscope.
The data were then quantized to eight bits. For the false
nearest neighbors test and the average mutual information
calculation, the data were down sampled by a factor of eight,
that is, seven out of every eight samples were thrown out.
This leaves 125 000 points at a sampling rate of 1.25 MHz
(7s=800 n3. The down sampling preserves the broadband
noise level.

For the local false nearest neighbors test and the
Lyapunov exponents, the quantized data were interpolated
! using a digital linear filter. This filter is designed to remove
A il | ‘\ Al “ l frequencies from 500 kHz to the Nyquist frequency
i i IR Al Sl f4/2=5 MHz and pass all frequencies below 500 kHz. This

il Ll i ‘ was needed to get higher resolution from the experimental
! data traces. In order to match our results, we did this with the
numerical traces as well. After performing the interpolation,
the data were also down sampled by a factor of 8, leaving
(b) 125 000 points at a sampling rate of 1.25 MO0 ns.
2.0 T T .

(a)

»
T

(4]
T

~
T

w

Laser Intensity

0 500 ) /1000 1500 2000
Time (microseconds)

B. Power spectrum

When we compare the power spectra of the numerical
results and the experimental data, we find similarities. Figure
4 shows the power spectra for the experimental d&tg.
| 4(a)] and the numerical daféig. 4(b)] for type | chaos. The
I peaks and their structure are very similar. Figure 5 shows the
same information for type Il chaos. Here, it is not clear from
the spectra whether the type Il chaos is well modeled.

-
5

Laser Intensity

0.5
C. Average mutual information
The average mutual information of the model is strikingly
0.0 similar to the experimental data. Figurépis the average

0 So%ime (migl)’(())osecondéfoo 2000 mutual information as a function of time lag for the numeri-
cally integrated model for type | chaos, and has essentially
) ) ) o _ the same shape as the average mutual information function
FIG. 3. (a) Numerically integrated type | intensity time series of the experimental dafFig. 6a)]. Note that the relaxation
with all modes polarized parallel to each other and no degeneratgq ijiation time is slightly different between the model and
four-wave mixing.(b) Numerically integrated type Il intensity time the data, however, this can be adjusted with a small change
series with two modes polarized parallel to each other and e the pL;mp powe’r
polarizepl _perpendicular to the other two and no nondegenerate four The average mu:[ual information function for type Il chaos
wave mixing. is also very similar between model and experiment as shown
) ] ) ) ] ) in Fig. 7. Again, the relaxation oscillation time can be refined
our data acquired using an eight bit sampling oscilloscopeyy changing the pumping power.
The resolution affects the local false neighbors and the
Lyapunov exponent calculations so in order to use these
tools to compare the experimental data and the numerical
model, it was necessary to perform the same manipulations. When we examine how the model dynamics respond to
In summary, the numerical model was integrated fof 10 noise using the false nearest neighbors algorithm, we find

points with a time step of 100 ns, matching the maximumthat the type | dynamics tend to suppress noise while the type
Il dynamics do not. Figure 8 shows the false nearest neigh-

bors results for the numerically integrated time traces
(125 000 pointsfor both types of dynamics, with and with-
out reservoir noise. It is clear, especially in FighBthat

D. False nearest neighbors

TABLE IV. Type Il model parameters.

Type Il chaos L ]
Parameter Condition Value when no noise is present, both type | and type Il dynamics
exhibit low-dimensional behavior with almost no residual.
ikl i=k andj=I 105w1 When Gaussian noiser& 0.01Eqominal) is added to the
i=landj=k 107°w? electric field for every integration time step of 100 ns, we
Otherwise ow!? find that type | dynamics have no residual, or in other words,
Bij i=] 1Low? the reservoir noise has been suppressed by the dynamics.
i #] 0.85 W1 However, in the type Il dynamics, the residual is around 5%,

which indicates that the dynamics have been significantly
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FIG. 4. (a) The power spectrum of the type | experimental data  FIG. 5. (a) The power spectrum of the type Il experimental data
shown in Fig. 1a). (b) The power spectrum of the numerically shown in Fig. 1a). (b) The power spectrum of the numerically
integrated time series shown in FigaB(type | chaos integrated time series shown in FigbB (type 1l chao$.

F. Average local Lyapunov exponents

affected by the reservoir noise. These findings are numeri- h local hed well b
cally consistent with our observations. When we normalize The average local Lyapunov exponents matched well be-

the noise levels using the maximum amplitude of the type fween tthg quel tind exi)hendmegtal tyt;))edl tracFe_s. Thelsle are
and type Il time series, we find that type Il is three timesCOMpPUted using the methods describe (. Figure .
more susceptible to noise than type | shows the average local Lyapunov exponents for the experi-

mental type | datdFig. 11(a)] and numerical model type |
data[Fig. 11(b)] usingdg=7 andd, =7. Figure 12 shows a

E. Local false nearest neighbors closeup of these graphs. Note that in both cases, there are

two positive Lyapunov exponents and a zero exponent. The
We also performed a test called local false nearest neigmegative Lyapunov exponents are slightly larger for the

bors on the numerical daf&]. This is used to find the local model dynamics. It is likely that a small parameter change
dimension, or number of equations of motion of the systentan improve the match.
that generated the data. The results for type | chaos are For the type Il data, the match is not so good. Figure 13
shown in Fig. 9. For the experimental ddféig. 9a)] the  shows the average local Lyapunov exponents for the experi-
predictability of the data has become independent of thenental type Il datdFigure 13a)] and the numerical model
number of neighbors and the embedding dimension. We fintype Il data[Fig. 13b)] usingde=7 andd, =7. Figure 14 is
that numerical resultfFig. Ab)] match well; both sets have a closeup of these graphs. The experimental data have three
a local dimensiord, ~6 and the same fraction of poor pre- positive Lyapunov exponents while the numerical model has
dictions. For type Il chaogFig. 10 the match is not so 2. The largest Lyapunov exponent from the experimental
good—the fraction of poor predictions is different by a factordata exceeds that of the model by a factor of two. We con-
of 2 and the local dimension appears substantially smaller foclude that the model of type Il dynamics does not match the
the model than for the experiment. experiment well.
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FIG. 6. (a) The average mutual information as a function of time  FIG. 7. (a) The average mutual information as a function of time
lag for the experimental time series shown in Fig@l(type |  lag for the experimental time series shown in Figb)i(type II
chaog. The time lag is given in units of 8/100 MHz or 800 rfb)  chao$. The time lag is given in units of 8/200 MHz or 800 1)
The average mutual information as a function of time lag for theThe average mutual information as a function of time lag for the
numerically integrated time series shown in Fi@3type | chaok  numerically integrated time series shown in Figh)3(type Il

chaos.

Table V gives the average Lyapunov exponent values for
L=2048, which is a good approximation of the global modei and we call this quantitiN,z. We repeat the differ-
Lyapunov exponents for the experimental data and the mod@ntial equation governing; using a generic source of noise
data. From these numbers, it is clear that type | chaos ig,(t):
modeled well, while type Il chaos is not.

V. NOISE SOURCES
M

; e i dA; 2
In an attempt_ to determine the source _of _the noise in the b YA - — E KinImA]'TAIAm+ \/577, (35)
equations, we discuss four sources of intrinsic quantum fluc- dt Ygilim=1
tuations: fluctuations due to cavity damping of the infrared,
fluctuations due to the green light leaving the cavity, fluctua-
tions due to spontaneous emission, and fluctuations inherenthere »(t) satisfies
in the conversion process. We also examined the possibility
of fluctuations in the pumping power, and concluded that
these could not cause the noise in the output intensity.
We choose to compute the noise levels in photons/s, so (pT ") p(t))y=6(t—t") (36)
we abandon our current units and go back to usingahe
numbers associated with the creation and annihilation opera-
tors AT and A;. ATA, is simply the number of photons in andD is the noise variance or strength in units of's
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FIG. 8. (a) The percentage of false nearest neighl{EisN) vs FIG. 9. (a) Local false nearest neighbors for the experimental

the embedding dimensiah for the numerically integrated model. type | time series shown in Fig(d). (b) Local false nearest neigh-
The graphs depict type | with no noigeircles, type Il with no bors for the numerically integrated type | time series.
noise (squarey type | with reservoir noised?=10"4, diamond$

and type Il with the same reservoir noiggangle. (b) An enlarge- dE, 27, M

ment of(a) showing that the percentage of FNN drops to 0.1% and ——=—vE——— 2 Kij K|mEJ-* EEn

stays there adg increases for both types of dynamics with no noise dt Yol @, ITm=1

added, and type | dynamics with noise. However, the percentage of

type Il FNN when noise is added is much higher, around 3% . ﬁwd\/—n (39)
\, -

C

The noise power in units of photons/s that is added t

i i i ian i< 3
each mode can be computed using the number equation: OThe noise swength in the simulation is *18/s. Thus,

D=10?* s 1. Using Eq.(37) we find that the noise in
photons/s is

dATA 2
=—2yATA — — Sk ATATAA 1
i WAIA= “;:1 i KimA AT A A Noun=2\Ni VD=1, (39
2 M
T _4 Fpt ; ; ;
+AlD7 > kijkmAATATA whereN; is the number of IR photons in modeThe strange
Ygilm=1 units in Eq.(39) occur because the units gfare the units of
+\D7'A,. (37)  &square root of & function in time.

From the experiment we find that about 1 mW of infrared
light is output from the laser. Given a transmission loss of
The amount of noise added to the numerical integration ir=0.1%, this means that there is approximateM of infra-
these units can be determined by converting the noise term ired power inside the cavity. Since each photon has an energy
the above equation to real unEswhere|E|? is in watts. of hwy=2%10"1° J and the round trip cavity time is



55 INFLUENCE OF NOISE ON CHAOTIC LASER DYNAMICS 6493

(@) (a)
T T T T T T T L T —~ 0.9‘ T i T T T T T T T 109
a
0.76 < o7, 107 g
‘s 05) {05 °
0.74 a . . -
—o Ng=10 | 3y m e 103 o
0.72 | B—8 Ng=25 S %11 ¢ ¢ %% ! ! ! ! ! go! &
i &—= Ng=50 o -01 I3 < < < < 01—~
0.70 | #——* N,=75 S o3} . vy Y Y Y Y Y Y yg3 %
Q. v 1. ©
« 068 g 05y 05 2
a oo 07 ¢ 1-0.7 8
0.66 | ® 09T lo9 <
8 11} S S m
0.64 | — a3l > {13 ©
o 15[ » 115
62 > >
0.62 < 17} 117 T
L i _1.9I> L L L s ) ) L L 1.9 ~
0.60 1 2 3 4 5 6 7 8,9 10 11
0.58 ‘ o~ =3 L; Number of steps is 2
1 2 3 4 5 6 7 _ 8 9 10 11 12
Local Dimension; d, (b)
. “ , . . . — ; —
O 09 08
: 0.7 + 107 <
.~ 051 ° los @
ol L ° ]
G oot 5or ot o 8
. [ . i .
> o014 4 & 1 ! ! ! ! 1458
[®] <« < « « « " —
€ 034 y Y Y Y VvV vV v y03 «
a 0sf 4 7 05 B
S 07f 107 €
> \ .
j 09| 1-09 g
g 14 r<n
o 13} ' 2 G SR T TN
= s > 115 @
2 17} > 117 »
< 9] 119 £
2.1 o L L ) 1 ) 1 ) 21
1 2 8 4 5 6 7 8,49 10 1
L; Number of steps is 2
0.20 ‘ : : :
2 3 4 5 6 7 8 9 10 11 12 FIG. 11. (a) The average local Lyapunov exponents for the ex-
Local Dimension; dL perimental type | time series shown in Figal (b) The average

local Lyapunov exponents for the numerically integrated type | time

FIG. 10. (a) Local false nearest neighbors for the experimentalseries shown in Fig.(8).
type Il time series shown in Fig.(h). (b) Local false nearest neigh-
bors for the numerically integrated type Il time series shown in Fig.Here,k is Boltzmann’s constant anf is the temperature of
3(b). the reservoir, which we take to be the cold cavity tempera-
ture of 300 K. The energy of an infrared photon is 1.2 eV
7.=2x10 1%s, we find thaiN;~10°. This puts the numeri- while kT at room temperature is about 0.026 eV. Thus
cal integration noise at2 10'° photons/s. (n(w)) is 10" ?°. The noise strength is 18> s~1. The noise
Similarly, the output green power of 1g0W with a fully ~ added to each mode due to IR damping is approximately

transmitting cavity implies that the number of green photons
in the cavityNy is about 18. Nir=~2/N;D;;=0.02 photons/s. (43

) ) Similarly, the green noise strength is
A. Damping fluctuations

First we wish to find the noise power due to damping of <7]T(t)7] (")) =Dgyd(t—t')= (n(wg)) S(t—t'). (44)
g 9 g .

infrared light. We compute the noise strendph . Vg

<17;r(t)77i(t’)):D“5(t—t’). (400  The noise power in infrared mode due to green cavity
damping fluctuations from EqA47) is

Based on Chap. 19-2 ifi5] we find that " "
« N2> ki ATAINDgn+22, ki ATAINDg7",
Ni*=yi(n(@i)) = —(n(w)), (41) =1 =1

Tc (45)

where(n(w;)) is the mean occupation number of bosons andvhich we approximate as

1 ree (n(2wq))
(n(@))= gramr—7 - (42) NPEE= 4N Vy—d' (46)

9
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Since we know the value o, local Lyapunov exponents for the numerically integrated type Il
time series shown in Fig.(B).
47%/(2 P
€=z ~107° W™+, (47) N
®d%Yg Nspont. "2 (49

I
we find k~500 s1. We assume that the decay time of the P
green is one cavity round trip time, or73/ which leads to a whereN, is the population of the second level. We can de-
noise power of %10~ ** photons/s, which is so tiny that it termine this population at threshold especially easily for an
can be ignored. Nd:YAG laser because it is a four level laser where
N,>>N;. According to[16], just below threshold,
B. Spontaneous emission noise

The spontaneous emission power can be determined in a (N,— Nl)threshold:%%NZ’ (50)
T
P

similar way to the infrared and green contributions shown
above. A simpler method followinffl6] is used instead. ) _ ) )

The Nd:YAG medium has a spontaneous emission spec¥here 7, is the cavity decay time or, using our constants,
trum with a Lorentzian shape of width, or 6 cm™! (180  7Tp= 7./ a. What this says is that no net stimulated emission

GHz). Knowing the density of photon modes in a cavity with 0ccurs, and the entire population inversion fluoresces at the
same rate as the resulting photons leak away. In our laser the

volumeV, AL d rest
population inversion is about>310'° at threshold.
dN 8wVf? Substituting the expression for population inversion into
af - &3 (48)  the power equation, we find that at threshold,
and assuming a cavity volume of 0.25 gwe find that the spont_ & _ v
number of modes in the spontaneous emission witfths N _rc_5X1O photons/s. G

p=3x10°.
The total spontaneous emission power in photons/s into @his is still 7 orders of magnitude lower than the levels we
single mode is simply expect from numerical integration.
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equation much like Eq(A47). In the process, a new noise
appears, which is related to the diffusion of probability that
occurs with nonlinear terms in the Hamiltonian. Since our
derivation of this noise term follow{sl 7] almost exactly, we
will simply present the results.

Starting with the perturbation related to the KTP conver-
sion process,

M
V=it X, «(alalg—g'aa), (52)
2

1,]=

we find that the terms due to this perturbation in the differ-
ential equations are

3
j=

3
—221 K1 AG -
=

Al 7
+ 3 t
i ; T
-2 Ky ALG
d | A le R 72

dr| A : _ 7
-2, ki AG

-A3 121 2 73

Al 73

23 wpdig | L7

3
j=

FIG. 14. (a) A closeup of Fig. 18). (b) A closeup of Fig. 18).

C. Conversion noise

Quantum fluctuations also occur in the conversion of in-

frared to green and vice versa. This noise must be deter-

df

g
gT

=

M
:.Z Kij
i 1

AA

AfAT

(53

(54)

mined with a different method than used in the above deriygre 4 is ac number similar toland can be considered to
vation [17,18. In this calculation, a differential equation is | e(,quilvalent tpa; used earlier. The noise matri is de-
i .

written for the evolution of the density matrix of the system

fined b
(master equation a coherent state basis is used to convert y _ 0
the master equation into a Fokker-Planck equation, and fi- kpnG O kg 0 . K13G v
nally, the Fokker-Planck equation is converted to a Langevin 0 kG 0 kpG 0 kpG
0 K 0 knG O
TABLE V. Lyapunov exponents of experimental data and pBBT= Ki§ : 20 . N .
model. 0«50 0 knGg 0 «kxng
K13g 0 K23g 0 K33g 0
Average Lyapunov exponents . + :
0 K13gT 0 K23g 0 K33G ]

L =2048;dg = 7;d, =7
Type 1 chaos Type 2 Chaos

(59

Experiment Model Experiment Model
0.080 0.080 0.244 0.088
0.041 0.038 0.172 0.034
0.008 0.009 0.091 —0.019

—0.033 —0.044 0.007 —0.091
—0.102 —0.152 —0.104 —0.216
—0.278 —0.338 —0.298 —0.518
-1.017 —1.266 —0.788 —1.188

and then terms are zero-mean fluctuation terms satisfying
(7 7f(t))=5,;8(t—t").

Other than the noise term, the four wave mixing perturba-
tions are the same as what were derived earlier. The multi-
plicative noise term is much larger than the one derived pre-
viously. A rough estimate of the number of noise photons
added to the IR mode every second is

(56)
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TABLE VI. Noise power estimates. The inclusion of both degenerate and nondegenerate four

wave mixing are features not found in previous models of

Name Expression Power Description  the laser. Both qualitative and quantitative behaviors found
Ngreen 1 2x10"%s  Cavity damping @n the experimental syste_m are captyrgd by this model, which
4kN; \/WT_—) is esp_ec_lally successful in its description of the type | case.
Yo of green light The distinction between type | and type Il chaos is seen as a

NIR . 1 2x1072%/s  Cavity damping difference in structure of the four wave mixing tensor, which
2JN; T oK =1 also leads to a difference in the noise susceptibility of the

of infrared light  equations of motion.

Nie 2yN;xNg 10ls KTP frequency Type | chaos occurs when all modes are parallel polarized
conversion and is controllable by the OPF chaos control algorithm. The

NpPont @ 10%/s Spontaneous ~ model confirms the bursting behavior found in the time
Te traces. Extremely low levels of green light are measured in

emission type | output, which is described by the model as a predomi-

NP 2x10%s  Noise power  pance of nondegenerate four wave mixing in the laser cavity.
from experiment | ow noise levels are measured in the intensity dynamics,
which agrees with the suppression of noise in the type |
model dynamics. The local false nearest neighbors test and
N~ 2 N; VN, (57 the Lyapunov exponents match between model and experi-
ment.

Type Il chaos occurs when one mode is polarized perpen-
or 10’ photons/s. This answer can be arrived at by othegicular to the other two and is not controllable by the OPF
means. According to Eq37) the green production rate is scheme. The spiking, highly irregular time series behavior is
approximately 4°N?/yq, which is 2< 10" photons/s. This captured in the model. The large amount of green light pro-
is the mean value of a process whose standard deviation wiiced by the laser is due to a large amount of degenerate
would expect to be the noise added to the infrared modefour wave mixing in the laser cavity. The high noise levels
Since the green mode is a coherent state and therefore hasound in the intensity dynamics agree with the model’s ten-
Poisson distribution in the number states, we would expecdiiency to not suppress reservoir noise but to amplify it in-
the standard deviation to be the square root of the meamtead. However, the local false nearest neighbors test and the
Thus, the noise added to the infrared mode should be aroundsapunov exponents do not match well between the model
107 photons/s. Table VI summarizes the power estimates iand the experiment, leading us to believe that type Il chaos is
photons/s for the noise sources described above. not fully modeled. We have found that the parameter space

It appears that there must be another source of noise iof the model is quite complex, especially when degenerate
our system that contributes much more than these quantufaur wave mixing is present. It is possible that additional
mechanical sources. Pumping fluctuations were consideredoise sources remain to be identified and included in the
To determine if this were the noise source, we substituted model.

Nonlinear time series analysis has aided this investigation
by revealing the link between the high noise levels in the
data and the large green light output. A more sophisticated

pi=pill+on(t)] (59 model that reproduces type | behavior almost perfectly and

approximates type Il behavior is the major result of this pa-
per. Time series analysis allows us to make a quantitative
comparison of the model with the experiment. This is the

into Eq. (34) where 5(t) is a zero mean unit variance ran- first case we know of where chaotic time series analysis has

dom number. We found that in order to reproduce the noissignificantly aided the development of a more complete

levels of the integrated time series with the experimentaphysical model of the dynamics. This system and model pro-

time series using the false nearest neighbors algorithm, weide a means to study the influence of noise on chaotic sys-

had to seto=0.05 or 5% fluctuation irp;. This level is tems.

unrealistically high for pumping fluctuations. In addition, the

fluctuations seen in the experimental data have a character-

istic frequency that is much higher than the relaxation oscil- ACKNOWLEDGMENTS
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APPENDIX

We reiterate the Hamiltonian:
M M

M
H=2, hoala +Hiog'g+in 2 (@ ag—g'a@)+ 2, 2 (b ATk(bia ~abl)]+ 2 [ QgbgbycHTadbyg!

M

I L s ; ; * AT ; ; R T
—gb)1+ fo 5 S0+, [0S, (2asinK2)~ of /S @sinK2]+ 3 [T (DS, Dby IATH2DLS- (2] dz

+; ﬁstblkbsk- (Al)
|
Using this Hamiltonian and the standard Heisenberg equgyg M _
tions of motion P —(yg+iwg)g—lm§=:l Kfma|am—§k: T gibg(0)e ek,
. d- (A9)
Iﬁa=[',H], (A2)

we arrive at the equations of motion governing the system.q

da . .
E: —|wiai+22 Kija]‘Tg"'E Tikbix
i=1 k

L
—f o' S_(z)sin(K;z)dz, (A3)
0
M
dg .
a:_uﬂgg_lmE:l K|ma|am+% ngbgk1 (A4)
dbyy .
T — Iy =1 Qb (A5)
dbgk )
Tz _ngg_|ngbgk. (AG)

The green reservoir equatidAb) is linear inbg,(t) so we
can integrate it:

. t ) ,
bgi= —bgk(0)e ok — rgkf g(t")e Pat=tgt’,
0
(A7)

Substituting this intdA4) we arrive at

d M .
_gz_iwgg_ 2 Klmalam+2 ng _bgk(o)eﬂQgkt
dt I,m=1 k

t ; ’
—rngOg(t')e—'“gkﬂ-t )dt’}. (A8)

where y, represents the damping rate.
Since this equation is linear g(t), we can integrate it to

g=—g(0)e” (rgtivght
¢ M
- E K|ma|(t’)am(t’)e*(ygﬂwg)(t—t’)dt,
0l,m=1

_E ngbgk(o) (e(‘yg+iwg*iﬂgk)t_1)'
kK Yot (wg_ng)

(A10)

In the integral, we replace the rapidly varying infrared op-
eratorsa;(t) with the more slowly varying interaction repre-
sentation formsA;(t) in the rotating coordinate system
where

ai(t)=e @itA|(1), (A11)
then we perform the integrations by removing the slowly
varying operators from under the integral. This method as-
sumes that the damping rajg (=10 Hz) is much higher
than the characteristic time scale of the evolution of the
slowing varying interaction form of the green operator. We
find through experimental observation that the green inten-
sity varies at the same 100 kHz rate as the infrared operator.
For times large compared tﬁgl we can ignore the decaying
transients. Thus we find

M

g(t)y=— >

m=1 Yot i(wg— o~ o)

ngbgk(o)
K ')’g+i(wg_9gk)

Kim@3m

- “igd (A12)

The fourth term can be approximated by a damping term

using the Wigner-Weisskopf approximation where the
modes are assumed to form a continuous spectrum and t

This expression is further simplfied if we assume that in

ikder for significant infrared-green conversion to occur,

interference time of sum og(t) is assumed to be much ®@g= @I+ ®m.

smaller than the characteristic time scale of the equation.

This approximation is discussed in detail in Sec. 19-P16&f

and will not be elaborated further here. This leads us to

1 M
g=—-_— 2 Kim&j@m+ 79,

Yg I,m=1 (A3
g I.m=
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where 74 is a dimensionless fluctuation term
+22 [To(2)S+(2)bs
ngbgk(o)

— 30 e 10, Al4
k Yg"H(wg_ng) ( )

9=~ +T¥(2)bl,S_(2)]+2A, (A20)

The green mode is seen here to be “slaved” to the infrared ds.(2) ot

dynamics; namelyg(t) is determined solely in terms of the dt :""SS+(Z)_; I's{2)bgiS3(2)

infrared modes and fluctuations associated with its coupling

to the external world. The use of a single green mode opera- M )

tor is justified as the green light escapes from the laser cavity - 2 oia S(2)sin(K;2), (A21)
and its dynamics is not observed. In what follows, we shall =t
see it acts as a damping factor, and the detailed mode struc- ds (2)
ture is not important. —

= —inS,(Z)—; Is(2)S5(2) by

Performing the same operations on the infrared equations dt
(without the final integrationwe arrive at the equations of M
motion for theM infrared modes. _;1 0S5(2)a;sin(K,2), (A22)
da; , M T
E:—(J’ﬁ'wi)aﬁﬁi_; 2ki;859 dby, . L
j=1 T =—iQqbe— Ol“sk(z)S,(z)dz, (A23)
L
—J o' S_(z)sin(K;z)dz, (A15) T
0 dbsk . + L
gt = 1Qablc | TS (2dz (A29)
where
) Note that we have added a constarkt @ theS; equation to
Yi=7|Ti( @) |“D(w;) (A16)  account for the steady-state population inversion due to op-
tical pumping.A is a pumping rate density and has units of
0 1/(lengthx time).
= — . . Q"I t . . . . .
7= zk: Tibi(0)e (AL7) Formally integrating the reservoir operators, substituting
them into theS,(z) equation of motion, and making the
M =3 in our problem. Langevin approximation we get
Next we substitutey into this equation, move to a coor- ds,(2)
dinate system rotating with frequenay by substituting # =(—¥ptTiwsg)S;(2)+ 142)S;5(2)
A=ela;, (A18)

M
— *alSy(z)sin(K;2). A25
and assume that in order for significant four wave mixing to 2‘1 o7 3 S(2)sin(K;2) (A25)
OCCUI w; + ;= 0|+ o
At this point, we need to note that the Nd:YAG laser is a

dA, 2 M classB laser and its polarization decay rate is much higher
W:_ViAi_ — 2 Kin|mAJTA|Am than ys because the polarization of the active medium is
Yg jlm=1 affected by the surrounding crystal lattice. For Nd:YAG,
M Vs ! is approximately 24Qus. The actual polarization decay
+22, Al pgelleitenty peloit time y,* is on the order of 10" s. So we substitute the
=1 faster decay rate,, for ys and ignore the associated fluctua-
L tions.
—f afe'“i'S_(z)sin(K;z)dz (A19) Now we transform thé&_ (z) equation to a rotating frame
0 with the driving term frequencwy by substituting
Now we turn to the two level system equations of motion. S.(2)=e"ivds, (2), (A26)
Although the Nd:YAG laser is actually a four level system,
this model works well for determining the equations of mo- dS.(2) _
tion. It fails when computing the spontaneous emission noise gt [ veti(esT0d)]S.(2)

power, so we compute this power in another way. In the

meanwhile we will ignore all noise contributions from the M _

two level system. —2 ogia'e”'?dSy(2)sin(K;z).  (A27)
The pertinent equations of motion are =1

d4S4(2) M Since the polarization decay rate is so high, $h€z) equa-
i i H : logt

=9 7S.(2)a+a's._ (z)1sin(K.z tion is slaved to the populatioB;(z) and the fielda;e'“d'. So

dt Zl oilS:(2)a+8iS-(z)]sin(Kz) we adiabatically eliminate this equation by setting
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dS.(2) Now we return to the field equation and substitute
a9 (A28)  S_(z)e '“d for S_(z) and take advantage of the orthogo-
nality condition of the normal modes

We also assume,>>ws— wy, Which is equivalent to say-

ing that the modes that lase are very near the peak of the fLsin(Kiz)sin(K-z)dz= 5 (A37)
Lorentzian line shape of the transition. T§e(z) equation 0 J )
is similar.
to get
—iwgt M
s+(z)———2 oiale @dsin(Kz)S5(2), (A29) dA 2 R
Ypi=1 FTERCa 2 KijkmATAA,
Yg il.m=1
. M
[ . a.al@dlgj ) ) )
S_(Z) = Qi S'n(K|Z)- (ASO) +2]21 A]Tnge'(“’ﬁ“’l')t-l— 77ielwit
We now take thes;(z) equation, substitute the reservoir so- o2 L
lutions, and perform the Langevin approximations: + N_'f sirf(K;z)n(z)dzA . (A38)
Y
d$;(2)
g A 2vl+S(2)] - 2[S:(2)7i(2) We have identifiedh(z) here. At this point we recall that the

number of photons in the cavity is large £1Gand treat the

M . + .
guantum mechanical operatofs and A; as if they arec
~n(DS-(2]+23, oi[S. (2 numbers. |
We break the population equation into the component
+aiTS_(z)]sin(Kiz). (A31) normal modes as described in detail[Bl. To do this, we

define a mode gai; as
For simplicity, we ignore the noise contribution term

7). SubstitutingS. (z)e*'“d for S.(z), assumingS;(z 2|oi|?7, _
ZOSEnZnutes withe, ,gan((i |)gnor|ng cross( t)erms we hg%e( ) Gi= Ny, fo n(z)sir’(K;z)dz, (A39)
dS:(2) =2A -2y +S4(2)]— _53 where 7, is the round trip cavity time of the las€®.2 n9.
dt Then
M 2
x 2, ofalasit(Kz). (A2) 4G _20im [ L{_ L1
=1 dt Ny, Tt

We substitute imA; and multiply the entire equation by,
the total number of atoms.

i|2sir?(K z)}smz(K z) dz.

dNS(z 4
%=2NA—275[N|+Ng(z)]—y—Ng(z) (A40)
P
M We integrate the first two terms on the right hand side and
XZI O'iZAiTAiSinZ(KiZ). (A33) substitute the pumping power
onLr,
Associating the operatdd S;(z) with the population inver- pi= Ny, ' (A41)
sionn(z), we find thatNl must be the density of two level P
systems in the mediumi/L. We also define dG, 1 20?76 |0'J-|2 ,
_ . gt - eimGl- > 2——A|
i=(2vs) ", (A34) t Ts Yo i=1 Y
2_ M 2
__[NA N f'- . 2077 T
== _ = X | n(z)sirf(K;z)dz+ 2—] A
n=| - J (A35) , @K Z)dzt 12‘1 ypl i
L 1-cog2K;z
to get xf n(z)cos{2K,~z)(+'))dz. (A42)
M 2 0
dn(Z) 1 — O + nz
T ;(n(z)—n)—n(z)gl 47_pAi Aisin(K;2), We define the mode coupling constagt:
(A36)

where; is the fluorescence decay time of the Nd:YAG me- = fon(z)cos(ZK 2)[1~cod2K;z)]dz
dium (240 us) andn is the mean population inversion. Jon(2)[1—cog2K;z)]dz
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fon(z)cos(ZK z)[1—coq2K;z)]dz
2G; (N)/p/2(r Tc)

ho
(A43) [Eif2=|A2— (A48)
Cc

. 2 - . . .
This coefficient is truly a constant if(z,t) factors into sepa- Since|A;|* is simply the number of photons in modeWe
rate time and space dependent components; this is probably?s0 substituter; =2y, and assume the;; are real:

good assumption for a standing wave cavity. Thus 2 M
dg; 1 G- ap)E 47 E E*EE
dGi 1 ]|2 dt 2 ( ai) i ﬁwd')’g j,I,m=1 Kij Kim=j =1Em

P 2
at = 5 (PG GE Al

M
. fiw .
+2, Ky EF mge @it et 4 Tdnie'wit. (A49)
j=1 c

M
Z‘ (A44) Now we definex and {j; so thatx{j;=«;; and {j; is
unitless and of order unity and define
M
=_ . TIA: |2 4722
PG 1+,—Z‘1 BiiIA| = (A50)
(A45) 47
which has units of inverse watts. We also define
where
hog 2|oi|*hogr
, 207 Bij = Bij o= o g f(1—§ij) (A51)
IBij:,y_Tf(l_gij)- (A46) Tc YpTe
P
. S which has units of inverse watts. The resulting equations are
The field equation is simplified. "
" dE; 1
dA (Gi ALl S Alan Gt =27 (G @Eime 2 LilinE EEn
ar 2_7_C_7i i_')’_gj,l,mzl Kij KimAj AlAm y
. hwy
_ | +2u3, ¢E] el e e,
+22 kA ngelert ety pelet, (A47) =1 Te
=t (A52)
We rescale the field equation so that it has measurable units. - M
We define the electric fiel& so thatl =|E|? has units of b B 1+ E 12 A53
watts. That is, dt = p 121 BIJ| j| - (A53)
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