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Influence of noise on chaotic laser dynamics
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The Nd:YAG laser with an intracavity second harmonic generating crystal is a versatile test bed for concepts
of nonlinear time series analysis as well as for techniques that have been developed for control of chaotic
systems. Quantitative comparisons of experimentally measured time series of the infrared light intensity are
made with numerically computed time series from a model derived here from basic principles. These com-
parisons utilize measures that help to distinguish between low and high dimensional dynamics and thus
enhance our understanding of the influence of noise sources on the emitted laser light.
@S1063-651X~97!10805-4#

PACS number~s!: 05.45.1b, 42.50.Lc, 42.65.Sf
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I. INTRODUCTION

The Nd:YAG ~neodymium doped yttrium aluminum ga
net! laser with an intracavity KTP~potassium titanyl phos
phate! crystal is a chaotic dynamical system for which it
possible to directly compare statistical aspects of meas
time series with predictions from a numerical model that h
been derived from basic theory. When operated with thre
more longitudinal cavity modes, this laser is known to d
play chaos, and attempts have previously been made to w
dynamical equations that could capture certain aspects o
served behavior@1–3#. These models have successfully pr
dicted the existence of antiphase dynamical states, en
sharing of chaotic polarization modes of the laser, and a
the possibility of obtaining stable operation through ro
tional orientation of the KTP and YAG crystals. The las
system has also served as an example of which algorit
for the control of chaotic lasers have been successfully
plied, both experimentally and in numerical simulatio
@4–7#.

It was, however, the observation that simple control al
rithms failed in certain operating regimes that motivated
in a previous paper to apply methods of nonlinear time se
to experimentally recorded intensity time series with the g
of discovering qualitative and quantitative differences in
operating regimes. The laser was thus operated specific
in three longitudinal modes in two polarization configur
tions by careful adjustment of crystal orientations in the c
ity. In the first configuration, all three longitudinal mode
were polarized parallel to each other. In the second,
mode was polarized orthogonal to the other two. All oth
parameters of the laser system such as the cavity loss, p
level, etc. were maintained constant, and the instrumenta
for the measurements was operated with exactly the s
sampling times and other settings.

The dynamics observed in these two polarization confi
rations were labeled type I and type II. Nonlinear time ser
analysis allowed us to determine the dimensionality of
chaotic attractors for the two cases and estimate
Lyapunov exponents in the two cases. A major conclusion
551063-651X/97/55~6!/6483~18!/$10.00
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our previous study was that while the type I behavior w
established to be low dimensional, there was clear evide
that the type II behavior was significantly influenced
noise, indicating the presence of high dimensional dynam
as well. At the end of that paper we sketched the outline o
theoretical approach to the derivation of a model that wo
allow us to simulate intensity time series and apply the n
linear analysis techniques to make a direct comparison w
the experimental results.

In this paper we present the derivation outlined in@8#, and
obtain the equations that describe the dynamics of a th
mode laser with an intracavity KTP crystal. Previous mod
@1–3# were found not to reproduce type I dynamical behav
after conducting extensive searches in parameter space.
shown here that the inclusion of nondegenerate four w
mixing, which leads to a model that includes the phase
namics of the electric fields, overcomes this difficulty. Ty
II behavior of the infrared light has very different characte
istics, and is accompanied by emission of substan
amounts of green light, in contrast to type I dynamics. D
generate four wave mixing is the dominant process in t
case. A major purpose of the research reported here i
include noise sources appropriately in the numerical eq
tions and to explore their influence on type I and type
deterministic chaotic dynamics.

The next section reviews the main aspects of type I a
type II chaotic dynamics of the laser. The experimenta
observed differences~time series behavior, controllability
mode structure, and green output power! are summarized.
We describe a noise measurement method called false n
est neighbors, an algorithm normally used to find the emb
ding dimension of a chaotic time series. We demonstrate
the two types of dynamics differ significantly in the amou
of high dimensional~noisy! dynamics of the laser. Section I
provides the basis for comparison with numerical compu
tions that are the focus of this paper.

Section III contains a derivation of the model equations
motion from a Hamiltonian. Three infrared cavity modes a
modeled as harmonic oscillators coupled to heat baths
mode that represents green light generated by the KTP c
6483 © 1997 The American Physical Society
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6484 55LIU, ROY, ABARBANEL, GILLS, AND NUNES
tal is also included. It is nonlinearly coupled to the infrar
modes so as to model the interaction in the KTP crystal. T
cavity loss for the green light is very high compared to th
for the infrared modes, hence it is sufficient to just consi
a single mode of green light and to eliminate its dynam
from the final set of equations that describe the evolution
the field amplitudes of the infrared modes and of the po
lation inversion of the two level atoms that drive them.

In Sec. IV we describe the results from numerically in
grating the equations of motion derived in Sec. III. There
a qualitative match between the wave forms of the mo
and experimental data in both chaos regimes. We a
present the false neighbors results when noise is added t
system and find that the resulting noise in the output int
sity differs in the two chaotic regimes for the same inp
noise, leading us to conclude that the susceptibility of
dynamics to noise differs for the two chaotic behaviors.

Section V attempts to locate the source of noise tha
seen in the laser time series. Four intrinsic quantum fluc
tion sources~cavity loss of infrared light, cavity loss of gree
light, intrinsic conversion noise, and spontaneous emiss!
are analyzed for their expected noise levels. These n
sources are all too weak by many orders of magnitude
contribute the amount of noise evidenced in the laser dyn
ics. We also consider and eliminate extrinsic pumping fl
tuations as the noise source.

II. TYPE I AND TYPE II BEHAVIOR

The basic elements of the laser system are a diode l
pumped Nd:YAG crystal and an intracavity KTP crystal wi
an output mirror that is highly reflecting at the 1.064mm line
of the Nd:YAG crystal but highly transmitting for the gree
light @1#. It has been shown that this laser can be configu
so that few modes ('3210) are present in the cavity; eac
mode can have one of two polarizations.

Using the methods of nonlinear time series analysis@8#
we are able to distinguish between chaotic behavior wh
the noise level is very low and situations where the outpu
still chaotic but substantial noise is also present. The form
we call type I chaos; it is observed when all three modes
polarized parallel to each other. The latter we label type
chaos; it is observed when one of the three modes is po
ized perpendicular to the other two. Very little green light
generated for type I behavior, which is demonstrably l
dimensional chaos, and is controllable by the method of
casional proportional feedback~OPF! @4,5#. Type II chaos is
accompanied by the generation of a substantial amoun
green light and a clear signature of noise is evident in
chaotic dynamics. It is typically not controlled by OPF.

The laser system displays chaotic intensity output wh
operated with three or more longitudinal modes. In t
present experiments the system parameters were adjust
obtain three mode operation in the two distinct polarizat
configurations. An appropriate orientation of the crystal a
allowed us to select these configurations. The pump level
to about twice the threshold pump power, was similar for
two configurations. The total intensity~the sum of the inten-
sities of each individual mode! was observed with a photo
diode having a rise time of less than 1 ns and was sam
using a 100 MHz eight bit digital oscilloscope capable
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storing 106 samples. In Fig. 1~a! we show the total intensity
when all three modes are polarized parallel to each o
~type I chaos!. In Fig. 1~b! we show the total intensity with
one mode polarized perpendicular to the other two~type II
chaos!.

In the time traces we can see the distinction between th
two operating regimes. Type I consists of long ‘‘bursts’’
relaxation oscillations, while type II appears far more irreg
lar. During type I operation very little green light, less than
mW, was observed, while more than 25mW of power in
green light accompanied type II activity.

We use the total laser intensityI (n)5I (t01nts), with the
sampling timets5100 ns, and its time delayed values
reconstruct the system phase space@9–12# by forming vec-
tors

y~n!5~ I ~n!,I ~n1T!, . . . ,I „n1~dE21!T…!, ~1!

FIG. 1. ~a! Fluctuations of the total infrared intensity for thre
mode Nd:YAG laser operation with all modes polarized parallel
each other. Relaxation oscillations of period'16 ms are evident
with irregular modulations of the envelope, typical of type I dyna
ics. ~b! Fluctuations of the total infrared intensity for three mo
Nd:YAG laser operation with two modes polarized parallel to ea
other and one polarized perpendicular to the other two~type II!. The
relaxation oscillations are still visible.
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55 6485INFLUENCE OF NOISE ON CHAOTIC LASER DYNAMICS
y~n11!5~ I ~n11!,I ~n111T!, . . . ,I „n1~dE21!T11…!

A ~2!

wheredE is the integer embedding dimension of the reco
structed phase space andT is the integer time lag in units o
ts . Our ability to use this phase space reconstruction
extracting physical properties from the observations rests
a proper choice of the time delayT and the embedding di
mensiondE . ForT we use the first minimum of the averag
mutual information @9,10,13# between I (n) and I (n1T)
evaluated as a function ofT.

dE is chosen by using the false nearest neighbors a
rithm @14,9,10#. This relies on the property of autonomou
dynamical systems that their trajectories in phase spac
not cross each other unless the system is observed in a s
with too low a dimension. To determine thedE necessary to
unfold the trajectories using time delay coordinates we
serve each point along the trajectoryy(n) and its neares
neighbor as the dimension of the space is increased f
dE to dE11. If the point and its nearest neighbor move s
ficiently far from each other as the dimension is increas
we conclude they were falsely seen to be nearest neigh
because of projection from a higher dimensional object,
attractor. When the percentage of false nearest neigh
drops to zero, we have established the value ofdE . Here, we
use the property of the algorithm that in the presence of n
@9,10#, a residual percentage of false nearest neighbor
observed. The amount of residual is a measure of the n
level.

The original data sets of 106 points were oversampled
These were down sampled by a factor of 8, resulting
125 000 data points. Using the time delay suggested by
average mutual information, we evaluated the percentag
false nearest neighbors for types I and II chaos. This perc
age averaged over five type I data traces is shown in Fig.~a!
~solid line! and enlarged in Fig. 2~b!. We see thatdE55
where the percentage of false nearest neighbors drops
below 0.5%. The dotted lines in Figs. 2~a! and 2~b! represent
the corresponding average over four type II data sets
these data it is clear that there is a residual number of f
neighbors that is not eliminated by going to higher emb
ding dimensions. We have consistently observed this m
larger fraction of residual false nearest neighbors for typ
dynamics compared to type I dynamics in the many ti
series of total intensity from our laser system. In fact,
mean type II residual is'40 times the mean type I residu
at dE56.

Table I contains a summary of the differences betwe
type I and type II chaos as found from experimental m
surements and from the nonlinear analysis of the data.

III. MODEL OF THE PROCESS

The laser is modeled using three interacting compone
the infrared cavity modes, a green cavity mode, and a
level active medium. We write the whole Hamiltonian as

H5H IR1Hgreen1Hconv1H2 level1Hdriving . ~3!
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Hconv models the conversion of IR to green and vice ve
that occurs in the KTP crystal, andHdriving models the inter-
action of the two level system with the infrared cavi
modes.

The longitudinal infrared normal modes in the laser a
represented by the annihilation and creation operatorsan and
an
† , respectively. These satisfy the usual equal time B
commutation relations

FIG. 2. ~a! The percentage of false nearest neighbors~FNN! vs
the embedding dimensiondE averaged over five type I chaotic da
sets~solid line! and four type II chaotic data sets~broken line!. ~b!
An enlargement of~a! showing that the percentage of type I FN
drops to 0.1% and stays there asdE increases but the percentage
type II FNN does not drop below 4%.

TABLE I. Type I and type II chaos summary.

Characteristic Type I Type II

Time series Bursting Irregular
Green output ,1 mW >25 mW
Mode configuration 3-0 2-1
OPF controllable Yes No
Embedding dimension '5 '5
False neighbors residual ,1% '5%
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@an ,am
† #5dmn , n,m51,2, . . . ,M . ~4!

For us,M53.
Each mode is coupled to independent heat baths or re

voirs which are represented by boson operatorsbik for the
kth reservoir mode of infrared modei . This harmonic oscil-
lator has a frequency ofV ik . We assume that all of the
reservoir modes are independent of each other and the i
red modes~except through the coupling!, that is

@bqn ,bpm
† #5dmndpq ~5!

and

@bpn ,am
† #50. ~6!

The reservoir modes are bilinearly coupled to the infra
modes with real coupling constantsG ik , which leads to

H IR5(
i51

M

\v iai
†ai1(

i51

M

(
k

@\V ikbik
† bik

1 i\G ik~bikai
†2aibik

† !#. ~7!

There is a single green mode represented by annihilation
creation operatorsg andg† that satisfies

@g,g†#51 ~8!

and

@g,am
† #50. ~9!

It is bilinearly coupled~via real coupling constantsGgk) to a
reservoir that is independent of the infrared mode reservo
The kth reservoir mode of the green mode is represente
bgk and has a frequency ofVgk . The green mode Hamil
tonian is

Hgreen5\vgg
†g1(

k
@\Vgkbgk

† bgk

1 i\Ggk~bgkg
†2gbgk

† !#. ~10!

In the KTP frequency conversion process, modeled
Hconv, conversion occurs when two infrared photons are
stroyed to create a green photon and when one green ph
is destroyed to create two infrared photons. We assume
coupling tensork i j is real and symmetric:

Hconv5 i\ (
i , j51

M

k i j ~ai
†aj

†g2g†ajai !. ~11!

The laser driving system is represented by a distribution
spin-1/2 systems along thez axis over the length of the lase
cavity. The Pauli spin operatorsS3(z,t) and S6(z,t) are
used to represent the two level systems and satisfy

@S3~z!,S6~z8!#562S6~z!d~z2z8! ~12!

and

@S1~z!,S2~z8!#5S3~z!d~z2z8!. ~13!
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In addition, it can be shown that

S6~z!S3~z8!57S6~z!d~z2z8!,

S1~z!S2~z8!5 1
2 @ I1S3~z!#d~z2z8!. ~14!

The two level system is damped by a cavity mode reserv
represented by boson operatorsbsk and bsk

† . The Hamil-
tonian is

H2 level5E
0

L H \vs

2
S3~z!1(

k
@ i\Gsk~z!S1~z!bsk

2 i\Gsk* ~z!bsk
† S2~z!#J dz1(

k
\Vskbsk

† bsk.

~15!

The coupling between the medium and the cavity mode
bilinear and the driving efficiencys i is assumed to be real

Hdriving5E
0

L

i\(
i51

M

s i@S1~z!aisin~Kiz!

2ai
†S2~z!sin~Kiz!#dz. ~16!

A derivation of the equations of motion for this syste
can be found in the Appendix. Here we give an overview
the physics of the model and the approximations that
made in the derivation.

First we use the Hamiltonian to determine the stand
Heisenberg equations of motion for the system. The reser
model allows us to apply the Wigner-Weisskopf approxim
tion ~see Appendix and Chap. 19.2 of@15#! to write a Lange-
vin equation for the green mode:

dg

dt
52~gg1 ivg!g2 (

lm51

M

k lm* alam

2(
k

Ggkbgk~0!e2 iVgkt, ~17!

wheregg represents the damping rate and the last term
fluctuation or noise term. Integrating this equation and tak
advantage of the fact that the decay rategg ('1010Hz) is
much faster than the characteristic rate at whichg fluctuates
(105 Hz!, we can find an equation for the green mode:

g52
1

gg
(

l ,m51

M

k lmalam1hg , ~18!

wherehg is a dimensionless fluctuation term

hg52(
k

Ggkbgk~0!

gg1 i ~vg2Vgk!
e2 iVgkt. ~19!

The green mode is seen here to be ‘‘slaved’’ to the infra
dynamics; namely,g(t) is determined solely in terms of th
infrared modes and fluctuations associated with its coup
to the external world. The use of a single green mode op
tor is justified as the green light escapes from the laser ca
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55 6487INFLUENCE OF NOISE ON CHAOTIC LASER DYNAMICS
and its dynamics is not observed. In what follows, we sh
see it acts as a damping factor, and the detailed mode s
ture is not important.

We do the same with the infrared reservoir and infra
equations of motion and substitute in the green evolut
equation to get

dAi
dt

52g iAi2
2

gg
(

j ,l ,m51

M

k i jk lmAj
†AlAm

12(
j51

M

Aj
†hge

i ~v i1v j !t1h ie
iv i t

2E
0

L

s i* e
iv i tS2~z!sin~Kiz!dz. ~20!

The noise (h i and hg) and damping (g i and gg) can be
related through a fluctuation-dissipation relation, which
derive in a later section.

Now we turn to the two level system equations of motio
Although the Nd:YAG laser is actually a four level system
this model works well for determining the equations of m
tion. It fails when computing the spontaneous emission no
power, so we compute this power in another way. In
meanwhile we will ignore all noise contributions from th
two level system.

The equations of motion are found again, and we forma
integrate the reservoir operators, substitute them into
S1(z) equation of motion, and make the Langevin appro
mation to get

dS1~z!

dt
5~2gp1 ivs!S1~z!1hs~z!S3~z!

2(
i51

M

s i* ai
†S3~z!sin~Kiz!. ~21!

At this point, we note that the Nd:YAG laser is a cla
B laser and its polarization decay rate is much higher t
gs because the polarization of the active medium is affec
by the surrounding crystal lattice. For Nd:YAG,gs

21 is ap-
proximately 240ms. The actual polarization decay tim
gp

21 is on the order of 10211 s.
So we substitute the faster decay rategp for gs and ignore

the associated fluctuations.
In the interaction frame moving at the driving frequen

vd we find that the driving terms are slaved to the populat
inversionS3(z) due to the high polarization decay rate. In
way similar to the method used to determine the green m
equation of motion we determine the driving terms to be

S1~z!52
1

gp
(
i51

M

s iai
†e2 ivdtsin~Kiz!S3~z!, ~22!

S2~z!52
S3~z!

gp
(
i51

M

s iaie
ivdtsin~Kiz!. ~23!

We now take theS3(z) equation, substitute the reservo
solutions, and perform the Langevin approximations.
ll
c-

d
n

e

.
,
-
e
e

y
e
-

n
d

n

e

dS3~z!

dt
52L22gs@ I1S3~z!#22@S1~z!hs

†~z!

2hs~z!S2~z!#12(
i51

M

s i@S1~z!ai

1ai
†S2~z!#sin~Kiz!. ~24!

A constant population inversion 2L has been added to ac
count for optical pumping. Further manipulations and as
ciating the operatorS3(z) with the population inversion
n(z), we find and equation for the population inversion
the laser,

dn~z!

dt
52

1

t f
@n~z!2n̄#2n~z!(

i51

M

4
s i
2

gp
Ai
†Aisin

2~Kiz!,

~25!

wheret f is the fluorescence decay time of the Nd:YAG m
dium ~240ms! and n̄ is the mean population inversion.

After substituting the driving terms into the field equatio
we get

dAi
dt

52g iAi2
2

gg
(

j ,l ,m51

M

k i jk lmAj
†AlAm

12(
j51

M

Aj
†hge

i ~v i1v j !t1h ie
iv i t

1
s i
2

Ngp
E
0

L

sin2~Kiz!n~z!dzAi . ~26!

We have identifiedn(z) here. At this point we recall that the
number of photons in the cavity is large (109) and treat the
quantum mechanical operatorsAi and Ai

† as if they arec
numbers.

Since we now have a partial differential equation f
n(z), we break this equation into the component norm
modes as described in detail in@3#. To do this, we define a
mode gainGi as

Gi5
2us i u2tc
Ngp

E
0

L

n~z!sin2~Kiz!dz, ~27!

wheretc is the round trip cavity time of the laser~0.2 ns!.
Assuming thatn(z,t) separate into time and space comp
nents we can write down equations for the mode gains
stead of the population inversion. After rescaling the eq
tions so that the electric field has measurable units we ob

dEi
dt

5
1

2tc
F ~Gi2a i !Ei2e (

j ,k,l51

M

z i j z lmEj*ElEmG
12k(

j51

M

z i j Ej*hge
i ~v i1v j !t1A\vd

tc
h ie

iv i t.

~28!

dGi

dt
5
1

t f
Fr i2GiS 11(

j51

M

b i j uEj u2D G . ~29!
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At this point we make use of an earlier model of the la
@3#:

2tc
dEi
dt

5~Gi2a i !Ei2eguEi u2Ei22e(
jÞ i

m i j uEj u2Ei ,

~30!

t f
dGi

dt
5r i2GiS 11(

j51

M

b i j uEj u2D . ~31!

where m i j5gc if the modes are parallel polarized an
m i j5(12gc) if the modes are orthogonally polarized. The
values ofm i j have been determined in@3# after consideration
of the phase-matching conditions for the intracavity KT
crystal in the presence of the polarized modes of the la
field. Notice that Eq.~30! is a special case of Eq.~28! having
the terms wherei5k and j5 l ~or i5 l and j5k). This is
called degenerate four wave mixing. Matching coefficients
the degenerate case, we find thatz i j5Agc when modesi and
j are parallel polarized andz i j5A12gc when they are per-
pendicularly polarized.

We expect that the degenerate and nondegenerate
wave mixing rates differ in the different laser configuration
Type I chaos exhibits nondegenerate four wave mixing w
little, if any, degenerate four wave mixing. This implies th
the green photons never have a chance to leave the c
before being downconverted to infrared again. The oppo
is true for type II chaos where the green photons imme
ately leave the cavity. In order to separate these two case
is necessary to define a four wave mixing tensore i jkl where

e i jklH edz i j zkl if i5k and j5 l

edz i j zkl if i5 l and j5k

enz i j zkl otherwise.
~32!

Here,ed is the degenerate four wave mixing rate anden is
the nondegenerate four wave mixing rate. We see that
~28! is a special case where the two rates are identical w
Eq. ~30! is the case when there is only degenerate four w
mixing and no nondegenerate four wave mixing.

The equations we numerically integrate are

dEi
dt

5
1

2tc
F ~Gi2a i !Ei2 (

j ,k,k51

M

e i jkl Ej*EkEl G1h i8,

~33!

dGi

dt
5
1

t f
Fr i2GiS 11(

j51

M

b i j uEj u2D G . ~34!

In these equationsi51,2,. . . ,M . We have lumped all of the
noise terms into the single additive noise termh i8. This is
possible because the multiplicative noise in Eq.~28! is much
smaller than the additive noise~see below!.

We use the parameters shown in Table II.e i jkl is the four
wave mixing efficiency in inverse watts and has a magnitu
on the order of 1025 W21. It depends on the mode configu
ration and the relative orientations of the Nd:YAG and KT
crystals.b i j is the cross saturation parameter between mo
r

er

n

ur
.
h
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i and j in units of inverse watts. These values are differe
for type I and type II chaos and are discussed below.

IV. NUMERICAL INTEGRATION RESULTS

These model equations were numerically integrated us
a standard stiff integrator from the Los Alamos CLAMS
brary with a time step of 100 ns. The reservoir noiseh i was
simulated by adding a complex Gaussian offset with a v
ance of 1024 W to the electric field of each mode betwee
integration steps.

Type I behavior is obtained in numerical integration wh
all modes are polarized in the same direction and no non
generate four wave mixing is present, as shown in Table

The absence of degenerate four wave mixing is consis
with the experimental absence of measurable green ou
Figure 3~a! shows a type I time trace obtained by numeric
integration of the equations. The bursting behavior and
relaxation oscillation period echo the experimental type
data in Fig. 1~a!.

An approximation to type II behavior is obtained whe
degenerate four-wave mixing dominates over nondegene
four-wave mixing as shown in Table IV.

Note that the factorsz i j in ~32! are all equal regardless o
whether modei and modej are parallel or perpendicular
The predominance of degenerate four wave mixing is c
sistent with experiment; with type II behavior we observe
high amount of green output. An example of a type II tim
trace obtained from numerical integration is shown in F
3~b!.

A. Data preparation

In our previous paper@8# we discussed the digital signa
processing methods we used to extract more resolution f

TABLE II. Model parameters.

Parameter Value Description

tc 0.2 ns Round trip
cavity time

t f 240ms Fluorescence decay tim
of Nd:YAG

a 0.01 Cavity loss factor
e i jkl See Tables III and Tables IV Four wave mixing

efficiency
r i 0.02 Pumping power
b i j See Tables III and IV Cross saturation

parameter

TABLE III. Type I model parameters.

Type I chaos
Parameter Condition Value

e i jkl i5k and j5 l 0 W21

i5 l and j5k 0 W21

Otherwise 2.131026 W21

b i j i5 j 1.0 W21

iÞ j 0.6 W21
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our data acquired using an eight bit sampling oscillosco
The resolution affects the local false neighbors and
Lyapunov exponent calculations so in order to use th
tools to compare the experimental data and the nume
model, it was necessary to perform the same manipulati
In summary, the numerical model was integrated for 16

points with a time step of 100 ns, matching the maximu

FIG. 3. ~a! Numerically integrated type I intensity time serie
with all modes polarized parallel to each other and no degene
four-wave mixing.~b! Numerically integrated type II intensity time
series with two modes polarized parallel to each other and
polarized perpendicular to the other two and no nondegenerate
wave mixing.

TABLE IV. Type II model parameters.

Type II chaos
Parameter Condition Value

e i jkl i5k and j5 l 1025 W21

i5 l and j5k 1025 W21

Otherwise 0 W21

b i j i5 j 1.0 W21

iÞ j 0.85 W21
e.
e
e
al
s.

storage capacity and the sampling time of the oscillosco
The data were then quantized to eight bits. For the fa
nearest neighbors test and the average mutual informa
calculation, the data were down sampled by a factor of eig
that is, seven out of every eight samples were thrown o
This leaves 125 000 points at a sampling rate of 1.25 M
(ts5800 ns!. The down sampling preserves the broadba
noise level.

For the local false nearest neighbors test and
Lyapunov exponents, the quantized data were interpola
using a digital linear filter. This filter is designed to remo
frequencies from 500 kHz to the Nyquist frequen
f s/255 MHz and pass all frequencies below 500 kHz. Th
was needed to get higher resolution from the experime
data traces. In order to match our results, we did this with
numerical traces as well. After performing the interpolatio
the data were also down sampled by a factor of 8, leav
125 000 points at a sampling rate of 1.25 MHz~800 ns!.

B. Power spectrum

When we compare the power spectra of the numer
results and the experimental data, we find similarities. Fig
4 shows the power spectra for the experimental data@Fig.
4~a!# and the numerical data@Fig. 4~b!# for type I chaos. The
peaks and their structure are very similar. Figure 5 shows
same information for type II chaos. Here, it is not clear fro
the spectra whether the type II chaos is well modeled.

C. Average mutual information

The average mutual information of the model is striking
similar to the experimental data. Figure 6~b! is the average
mutual information as a function of time lag for the nume
cally integrated model for type I chaos, and has essenti
the same shape as the average mutual information func
of the experimental data@Fig. 6~a!#. Note that the relaxation
oscillation time is slightly different between the model a
the data, however, this can be adjusted with a small cha
in the pump power.

The average mutual information function for type II cha
is also very similar between model and experiment as sho
in Fig. 7. Again, the relaxation oscillation time can be refin
by changing the pumping power.

D. False nearest neighbors

When we examine how the model dynamics respond
noise using the false nearest neighbors algorithm, we
that the type I dynamics tend to suppress noise while the t
II dynamics do not. Figure 8 shows the false nearest ne
bors results for the numerically integrated time trac
~125 000 points! for both types of dynamics, with and with
out reservoir noise. It is clear, especially in Fig. 8~b! that
when no noise is present, both type I and type II dynam
exhibit low-dimensional behavior with almost no residual

When Gaussian noise (s50.01uEnominalu) is added to the
electric field for every integration time step of 100 ns, w
find that type I dynamics have no residual, or in other wor
the reservoir noise has been suppressed by the dynam
However, in the type II dynamics, the residual is around 5
which indicates that the dynamics have been significan

te
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affected by the reservoir noise. These findings are num
cally consistent with our observations. When we normal
the noise levels using the maximum amplitude of the typ
and type II time series, we find that type II is three tim
more susceptible to noise than type I.

E. Local false nearest neighbors

We also performed a test called local false nearest ne
bors on the numerical data@8#. This is used to find the loca
dimension, or number of equations of motion of the syst
that generated the data. The results for type I chaos
shown in Fig. 9. For the experimental data@Fig. 9~a!# the
predictability of the data has become independent of
number of neighbors and the embedding dimension. We
that numerical results@Fig. 9~b!# match well; both sets hav
a local dimensiondL'6 and the same fraction of poor pre
dictions. For type II chaos~Fig. 10! the match is not so
good—the fraction of poor predictions is different by a fac
of 2 and the local dimension appears substantially smaller
the model than for the experiment.

FIG. 4. ~a! The power spectrum of the type I experimental da
shown in Fig. 1~a!. ~b! The power spectrum of the numerical
integrated time series shown in Fig. 3~a! ~type I chaos!.
ri-
e
I

h-

re

e
d

r
or

F. Average local Lyapunov exponents

The average local Lyapunov exponents matched well
tween the model and experimental type I traces. These
computed using the methods described in@8#. Figure 11
shows the average local Lyapunov exponents for the exp
mental type I data@Fig. 11~a!# and numerical model type
data@Fig. 11~b!# usingdE57 anddL57. Figure 12 shows a
closeup of these graphs. Note that in both cases, there
two positive Lyapunov exponents and a zero exponent.
negative Lyapunov exponents are slightly larger for t
model dynamics. It is likely that a small parameter chan
can improve the match.

For the type II data, the match is not so good. Figure
shows the average local Lyapunov exponents for the exp
mental type II data@Figure 13~a!# and the numerical mode
type II data@Fig. 13~b!# usingdE57 anddL57. Figure 14 is
a closeup of these graphs. The experimental data have t
positive Lyapunov exponents while the numerical model h
2. The largest Lyapunov exponent from the experimen
data exceeds that of the model by a factor of two. We c
clude that the model of type II dynamics does not match
experiment well.

FIG. 5. ~a! The power spectrum of the type II experimental da
shown in Fig. 1~a!. ~b! The power spectrum of the numericall
integrated time series shown in Fig. 3~b! ~type II chaos!.
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Table V gives the average Lyapunov exponent values
L52048, which is a good approximation of the glob
Lyapunov exponents for the experimental data and the m
data. From these numbers, it is clear that type I chao
modeled well, while type II chaos is not.

V. NOISE SOURCES

In an attempt to determine the source of the noise in
equations, we discuss four sources of intrinsic quantum fl
tuations: fluctuations due to cavity damping of the infrare
fluctuations due to the green light leaving the cavity, fluctu
tions due to spontaneous emission, and fluctuations inhe
in the conversion process. We also examined the possib
of fluctuations in the pumping power, and concluded t
these could not cause the noise in the output intensity.

We choose to compute the noise levels in photons/s
we abandon our current units and go back to using thc
numbers associated with the creation and annihilation op
tors Ai

† andAi . Ai
†Ai is simply the number of photons i

FIG. 6. ~a! The average mutual information as a function of tim
lag for the experimental time series shown in Fig 1~a! ~type I
chaos!. The time lag is given in units of 8/100 MHz or 800 ns.~b!
The average mutual information as a function of time lag for
numerically integrated time series shown in Fig. 3~a! ~type I chaos!.
r
l
el
is

e
c-
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nt
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t

so
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modei and we call this quantityNIR . We repeat the differ-
ential equation governingAi using a generic source of nois
h(t):

dAi
dt

52g iAi2
2

gg
(

j ,l ,m51

M

k i jk lmAj
†AlAm1ADh, ~35!

whereh(t) satisfies

^h†~ t8!h~ t !&5d~ t2t8! ~36!

andD is the noise variance or strength in units of s21.

e

FIG. 7. ~a! The average mutual information as a function of tim
lag for the experimental time series shown in Fig. 1~b! ~type II
chaos!. The time lag is given in units of 8/100 MHz or 800 ns.~b!
The average mutual information as a function of time lag for
numerically integrated time series shown in Fig. 3~b! ~type II
chaos!.
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The noise power in units of photons/s that is added
each mode can be computed using the number equation

dAi
†Ai

dt
522g iAi

†Ai2
2

gg
(

j ,l ,m51

M

k i jk lmAi
†Aj

†AlAm

1Ai
†ADh2

2

gg
(

j ,l ,m51

M

k i jk lmAjAl
†Am

†Ai

1ADh†Ai . ~37!

The amount of noise added to the numerical integration
these units can be determined by converting the noise ter
the above equation to real unitsE whereuEu2 is in watts.

FIG. 8. ~a! The percentage of false nearest neighbors~FNN! vs
the embedding dimensiondE for the numerically integrated mode
The graphs depict type I with no noise~circles!, type II with no
noise~squares!, type I with reservoir noise (s251024, diamonds!
and type II with the same reservoir noise~triangle!. ~b! An enlarge-
ment of~a! showing that the percentage of FNN drops to 0.1% a
stays there asdE increases for both types of dynamics with no no
added, and type I dynamics with noise. However, the percentag
type II FNN when noise is added is much higher, around 3% .
o

in
in

dEi
dt

52g iEi2
2tc

gg\vd
(

j ,l ,m51

M

k i jk lmEj*ElEm

1A\vd

tc
ADh. ~38!

The noise strength in the simulation is 103 W/s. Thus,
D51021 s21. Using Eq. ~37! we find that the noise in
photons/s is

Nnum'2ANiAD
1

s21/2, ~39!

whereNi is the number of IR photons in modei . The strange
units in Eq.~39! occur because the units ofh are the units of
a square root of ad function in time.

From the experiment we find that about 1 mW of infrar
light is output from the laser. Given a transmission loss
'0.1%, this means that there is approximately 1 W of infra-
red power inside the cavity. Since each photon has an en
of \vd52310219 J and the round trip cavity time is

d

of

FIG. 9. ~a! Local false nearest neighbors for the experimen
type I time series shown in Fig. 1~a!. ~b! Local false nearest neigh
bors for the numerically integrated type I time series.
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tc52310210 s, we find thatNi'109. This puts the numeri-
cal integration noise at 231015 photons/s.

Similarly, the output green power of 100mW with a fully
transmitting cavity implies that the number of green photo
in the cavityNg is about 10

5.

A. Damping fluctuations

First we wish to find the noise power due to damping
infrared light. We compute the noise strengthDii .

^h i
†~ t !h i~ t8!&5Diid~ t2t8!. ~40!

Based on Chap. 19-2 in@15# we find that

Ni
IR5g i^n~v i !&5

a

tc
^n~v i !&, ~41!

where^n(v i)& is the mean occupation number of bosons a

^n~v i !&5
1

e\v i /kT21
. ~42!

FIG. 10. ~a! Local false nearest neighbors for the experimen
type II time series shown in Fig. 1~b!. ~b! Local false nearest neigh
bors for the numerically integrated type II time series shown in F
3~b!.
s

f

d

Here,k is Boltzmann’s constant andT is the temperature o
the reservoir, which we take to be the cold cavity tempe
ture of 300 K. The energy of an infrared photon is 1.2 e
while kT at room temperature is about 0.026 eV. Th
^n(v)& is 10220. The noise strength is 10213 s21. The noise
added to each mode due to IR damping is approximately

NIR'2ANiADii50.02 photons/s. ~43!

Similarly, the green noise strength is

^hg
†~ t !hg~ t8!&5Dgd~ t2t8!5

^n~vg!&
gg

d~ t2t8!. ~44!

The noise power in infrared modei due to green cavity
damping fluctuations from Eq.~A47! is

Ni
green52(

j51

M

k jAi
†Aj

†ADgh12(
j51

M

k jAj
†Ai

†ADgh
†,

~45!

which we approximate as

Ni
green54kNiA^n~2vd!&

gg
. ~46!

l

.

FIG. 11. ~a! The average local Lyapunov exponents for the e
perimental type I time series shown in Fig. 1~a!. ~b! The average
local Lyapunov exponents for the numerically integrated type I ti
series shown in Fig. 3~a!.
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Since we know the value ofe,

e5
4tc

2k2

\vdgg
'1025 W21, ~47!

we find k'500 s21. We assume that the decay time of th
green is one cavity round trip time, or 1/tc , which leads to a
noise power of 2310212 photons/s, which is so tiny that i
can be ignored.

B. Spontaneous emission noise

The spontaneous emission power can be determined
similar way to the infrared and green contributions sho
above. A simpler method following@16# is used instead.

The Nd:YAG medium has a spontaneous emission sp
trum with a Lorentzian shape of widthgp or 6 cm21 ~180
GHz!. Knowing the density of photon modes in a cavity wi
volumeV,

dN

d f
5
8pVf2

c3
, ~48!

and assuming a cavity volume of 0.25 cm3 we find that the
number of modes in the spontaneous emission widthd f is
p533109.

The total spontaneous emission power in photons/s in
single mode is simply

FIG. 12. ~a! A closeup of Fig. 11~a!. ~b! A closeup of Fig. 11~b!.
a
n

c-

a

Ni
spont5

N2

pt f
, ~49!

whereN2 is the population of the second level. We can d
termine this population at threshold especially easily for
Nd:YAG laser because it is a four level laser wher
N2..N1. According to@16#, just below threshold,

~N22N1! threshold5
pt f
tp

'N2 , ~50!

where tp is the cavity decay time or, using our constant
tp5tc /a. What this says is that no net stimulated emissio
occurs, and the entire population inversion fluoresces at
same rate as the resulting photons leak away. In our laser
population inversion is about 331015 at threshold.

Substituting the expression for population inversion in
the power equation, we find that at threshold,

Ni
spont5

a

tc
553107 photons/s. ~51!

This is still 7 orders of magnitude lower than the levels w
expect from numerical integration.

FIG. 13. ~a! The average local Lyapunov exponents for the e
perimental type II time series shown in Fig. 1~b!. ~b! The average
local Lyapunov exponents for the numerically integrated type
time series shown in Fig. 3~b!.
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C. Conversion noise

Quantum fluctuations also occur in the conversion of
frared to green and vice versa. This noise must be de
mined with a different method than used in the above de
vation @17,18#. In this calculation, a differential equation i
written for the evolution of the density matrix of the syste
~master equation!, a coherent state basis is used to conv
the master equation into a Fokker-Planck equation, and
nally, the Fokker-Planck equation is converted to a Lange

FIG. 14. ~a! A closeup of Fig. 13~a!. ~b! A closeup of Fig. 13~b!.

TABLE V. Lyapunov exponents of experimental data an
model.

Average Lyapunov exponents

L 5 2048;dE 5 7; dL 5 7
Type 1 chaos Type 2 Chaos

Experiment Model Experiment Model

0.080 0.080 0.244 0.088
0.041 0.038 0.172 0.034
0.008 0.009 0.091 20.019

20.033 20.044 0.007 20.091
20.102 20.152 20.104 20.216
20.278 20.338 20.298 20.518
21.017 21.266 20.788 21.188
-
r-
i-

rt
fi-
in

equation much like Eq.~A47!. In the process, a new nois
appears, which is related to the diffusion of probability th
occurs with nonlinear terms in the Hamiltonian. Since o
derivation of this noise term follows@17# almost exactly, we
will simply present the results.

Starting with the perturbation related to the KTP conv
sion process,

V5 i\ (
i , j51

M

k i j ~ai
†aj

†g2g†ajai !, ~52!

we find that the terms due to this perturbation in the diff
ential equations are

~53!

d

dtFGG†G5 (
i , j51

M

k i j FAiAj

Ai
†Aj

†G . ~54!

Here,Ai is a c number similar to~and can be considered t
be equivalent to! ai used earlier. The noise matrixB is de-
fined by

~55!

and theh terms are zero-mean fluctuation terms satisfyin

^h i
†~ t !h j

†~ t8!&5d i jd~ t2t8!. ~56!

Other than the noise term, the four wave mixing perturb
tions are the same as what were derived earlier. The m
plicative noise term is much larger than the one derived p
viously. A rough estimate of the number of noise photo
added to the IR mode every second is
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Ni
conv'2ANiAkNg ~57!

or 107 photons/s. This answer can be arrived at by ot
means. According to Eq.~37! the green production rate i
approximately 4k2Ni

2/gg , which is 231014 photons/s. This
is the mean value of a process whose standard deviation
would expect to be the noise added to the infrared mo
Since the green mode is a coherent state and therefore
Poisson distribution in the number states, we would exp
the standard deviation to be the square root of the me
Thus, the noise added to the infrared mode should be aro
107 photons/s. Table VI summarizes the power estimate
photons/s for the noise sources described above.

It appears that there must be another source of nois
our system that contributes much more than these quan
mechanical sources. Pumping fluctuations were conside
To determine if this were the noise source, we substitute

r i⇐r i@11sh~ t !# ~58!

into Eq. ~34! whereh(t) is a zero mean unit variance ran
dom number. We found that in order to reproduce the no
levels of the integrated time series with the experimen
time series using the false nearest neighbors algorithm,
had to sets50.05 or 5% fluctuation inr i . This level is
unrealistically high for pumping fluctuations. In addition, th
fluctuations seen in the experimental data have a chara
istic frequency that is much higher than the relaxation os
lation rate, which is impossible to attain through pumpi
fluctuations because of the slow time constant in Eq.~34!.

VI. SUMMARY AND CONCLUSIONS

In summary, we have developed a model that captu
key features of the intensity dynamics of the three-mo
Nd:YAG laser with an intracavity KTP crystal. This mod
consists of three equations for each infrared mode; two
scribe the complex electric field and one describes the g

TABLE VI. Noise power estimates.

Name Expression Power Description

Ni
green

4kNiA 1
gg(e

\vd /kT21)

2310212/s Cavity damping

of green light
Ni
IR

2ANiAa

tc

1
e\vd /kT21

231022/s Cavity damping

of infrared light
Ni
conv 2ANikNg 107/s KTP frequency

conversion
Ni
spont a

tc

108/s Spontaneous

emission
Ni
expt 231015/s Noise power

from experiment
r

we
e.
s a
ct
n.
nd
in

in
m
d.

e
l
e

er-
l-

s
e

e-
in.

The inclusion of both degenerate and nondegenerate
wave mixing are features not found in previous models
the laser. Both qualitative and quantitative behaviors fou
in the experimental system are captured by this model, wh
is especially successful in its description of the type I ca
The distinction between type I and type II chaos is seen a
difference in structure of the four wave mixing tensor, whi
also leads to a difference in the noise susceptibility of
equations of motion.

Type I chaos occurs when all modes are parallel polari
and is controllable by the OPF chaos control algorithm. T
model confirms the bursting behavior found in the tim
traces. Extremely low levels of green light are measured
type I output, which is described by the model as a predo
nance of nondegenerate four wave mixing in the laser cav
Low noise levels are measured in the intensity dynam
which agrees with the suppression of noise in the typ
model dynamics. The local false nearest neighbors test
the Lyapunov exponents match between model and exp
ment.

Type II chaos occurs when one mode is polarized perp
dicular to the other two and is not controllable by the O
scheme. The spiking, highly irregular time series behavio
captured in the model. The large amount of green light p
duced by the laser is due to a large amount of degene
four wave mixing in the laser cavity. The high noise leve
found in the intensity dynamics agree with the model’s te
dency to not suppress reservoir noise but to amplify it
stead. However, the local false nearest neighbors test an
Lyapunov exponents do not match well between the mo
and the experiment, leading us to believe that type II chao
not fully modeled. We have found that the parameter sp
of the model is quite complex, especially when degener
four wave mixing is present. It is possible that addition
noise sources remain to be identified and included in
model.

Nonlinear time series analysis has aided this investiga
by revealing the link between the high noise levels in t
data and the large green light output. A more sophistica
model that reproduces type I behavior almost perfectly a
approximates type II behavior is the major result of this p
per. Time series analysis allows us to make a quantita
comparison of the model with the experiment. This is t
first case we know of where chaotic time series analysis
significantly aided the development of a more compl
physical model of the dynamics. This system and model p
vide a means to study the influence of noise on chaotic s
tems.
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APPENDIX

We reiterate the Hamiltonian:

H5(
i51

M

\viai
†ai1\vgg

†g1i\ (
i,j51

M

kij~ai
†aj

†g2g†ajai!1(
i51

M

(
k

@\Vikbik
†bik1i\Gik~bikai

†2aibik
† !#1(

k
@\Vgkbgk

† bgk1i\Ggk~bgkg
†

2gbgk
† !#1E

0

LH\vs

2
S3~z!1i\(

i51

M

@siS1~z!aisin~Kiz!2si*ai
†S2~z!sin~Kiz!#1(

k
@i\Gsk~z!S1~z!bsk2i\Gsk* ~z!bsk

†S2~z!#Jdz
1(

k
\Vskbsk

† bsk. ~A1!
u

m

rm
he

h
io

p-
-

ly
as-

the
e
en-
tor.
g

in
ur,
Using this Hamiltonian and the standard Heisenberg eq
tions of motion

i\
d•

dt
5@•,H#, ~A2!

we arrive at the equations of motion governing the syste

dai
dt

52 iv iai12(
j51

M

k i j aj
†g1(

k
G ikbik

2E
0

L

s i*S2~z!sin~Kiz!dz, ~A3!

dg

dt
52 ivgg2 (

l ,m51

M

k lmalam1(
k

Ggkbgk , ~A4!

dbik
dt

52G ikai2 iV ikbik , ~A5!

dbgk
dt

52Ggkg2 iVgkbgk . ~A6!

The green reservoir equation~A6! is linear inbgk(t) so we
can integrate it:

bgk52bgk~0!e2 iVgkt2GgkE
0

t

g~ t8!e2 iVgk~ t2t8!dt8.

~A7!

Substituting this into~A4! we arrive at

dg

dt
52 ivgg2 (

l ,m51

M

k lmalam1(
k

GgkF2bgk~0!e2 iVgkt

2GgkE
0

t

g~ t8!e2 iVgk~ t2t8!dt8G . ~A8!

The fourth term can be approximated by a damping te
using the Wigner-Weisskopf approximation where t
modes are assumed to form a continuous spectrum and
interference time of sum ong(t) is assumed to be muc
smaller than the characteristic time scale of the equat
This approximation is discussed in detail in Sec. 19-2 of@15#
and will not be elaborated further here. This leads us to
a-

.

the

n.

dg

dt
52~gg1 ivg!g2 (

lm51

M

k lm* alam2(
k

Ggkbgk~0!e2 iVgkt,

~A9!

wheregg represents the damping rate.
Since this equation is linear ing(t), we can integrate it to

find

g52g~0!e2~gg1 ivg!t

2E
0

t

(
l ,m51

M

k lmal~ t8!am~ t8!e2~gg1 ivg!~ t2t8!dt8

2(
k

Ggkbgk~0!

gg1 i ~vg2Vgk!
~e~gg1 ivg2 iVgk!t21!.

~A10!

In the integral, we replace the rapidly varying infrared o
eratorsai(t) with the more slowly varying interaction repre
sentation formsAi(t) in the rotating coordinate system
where

ai~ t !5e2 iv i tAi~ t !, ~A11!

then we perform the integrations by removing the slow
varying operators from under the integral. This method
sumes that the damping rategg ('1010 Hz! is much higher
than the characteristic time scale of the evolution of
slowing varying interaction form of the green operator. W
find through experimental observation that the green int
sity varies at the same 100 kHz rate as the infrared opera
For times large compared togg

21 we can ignore the decayin
transients. Thus we find

g~ t !52 (
l ,m51

M
k lmalam

gg1 i ~vg2v l2vm!

2(
k

Ggkbgk~0!

gg1 i ~vg2Vgk!
e2 iVgkt. ~A12!

This expression is further simplfied if we assume that
order for significant infrared-green conversion to occ
vg5v l1vm .

g52
1

gg
(

l ,m51

M

k lmalam1hg , ~A13!



re
e
lin
er
vi
a
tru

io
f

-

to

n

o
is
th
e

op-
of

ing
e

a
er
is
,
y

a-

6498 55LIU, ROY, ABARBANEL, GILLS, AND NUNES
wherehg is a dimensionless fluctuation term

hg52(
k

Ggkbgk~0!

gg1 i ~vg2Vgk!
e2 iVgkt. ~A14!

The green mode is seen here to be ‘‘slaved’’ to the infra
dynamics; namely,g(t) is determined solely in terms of th
infrared modes and fluctuations associated with its coup
to the external world. The use of a single green mode op
tor is justified as the green light escapes from the laser ca
and its dynamics is not observed. In what follows, we sh
see it acts as a damping factor, and the detailed mode s
ture is not important.

Performing the same operations on the infrared equat
~without the final integration! we arrive at the equations o
motion for theM infrared modes.

dai
dt

52~g i1 iv i !ai1h i2(
j51

M

2k i j aj
†g

2E
0

L

s i*S2~z!sin~Kiz!dz, ~A15!

where

g i5puG i~v i !u2D~v i ! ~A16!

h i52(
k

G ikbik~0!e2 iV ikt . ~A17!

M53 in our problem.
Next we substituteg into this equation, move to a coor

dinate system rotating with frequencyv i by substituting

Ai5eiv i tai , ~A18!

and assume that in order for significant four wave mixing
occur,v i1v j5v l1vm :

dAi
dt

52g iAi2
2

gg
(

j ,l ,m51

M

k i jk lmAj
†AlAm

12(
j51

M

Aj
†hge

i ~v i1v j !t1h ie
iv i t

2E
0

L

s i* e
iv i tS2~z!sin~Kiz!dz. ~A19!

Now we turn to the two level system equations of motio
Although the Nd:YAG laser is actually a four level system
this model works well for determining the equations of m
tion. It fails when computing the spontaneous emission no
power, so we compute this power in another way. In
meanwhile we will ignore all noise contributions from th
two level system.

The pertinent equations of motion are

dS3~z!

dt
52(

i51

M

s i@S1~z!ai1ai
†S2~z!#sin~Kiz!
d

g
a-
ty
ll
c-

ns

.
,
-
e
e

12(
k

@Gsk~z!S1~z!bsk

1Gsk* ~z!bsk
† S2~z!#12L, ~A20!

dS1~z!

dt
5 ivsS1~z!2(

k
Gsk* ~z!bsk

† S3~z!

2(
i51

M

s iai
†S3~z!sin~Kiz!, ~A21!

dS2~z!

dt
52 ivsS2~z!2(

k
Gsk~z!S3~z!bsk

2(
i51

M

s iS3~z!aisin~Kiz!, ~A22!

dbsk
dt

52 iVskbsk2E
0

L

Gsk* ~z!S2~z!dz, ~A23!

dbsk
†

dt
5 iVskbsk

† 2E
0

L

Gsk~z!S1~z!dz. ~A24!

Note that we have added a constant 2L to theS3 equation to
account for the steady-state population inversion due to
tical pumping.L is a pumping rate density and has units
1/(length3time).

Formally integrating the reservoir operators, substitut
them into theS1(z) equation of motion, and making th
Langevin approximation we get

dS1~z!

dt
5~2gp1 ivs!S1~z!1hs~z!S3~z!

2(
i51

M

s i* ai
†S3~z!sin~Kiz!. ~A25!

At this point, we need to note that the Nd:YAG laser is
classB laser and its polarization decay rate is much high
than gs because the polarization of the active medium
affected by the surrounding crystal lattice. For Nd:YAG
gs

21 is approximately 240ms. The actual polarization deca
time gp

21 is on the order of 10211 s. So we substitute the
faster decay rategp for gs and ignore the associated fluctu
tions.

Now we transform theS1(z) equation to a rotating frame
with the driving term frequencyvd by substituting

S1~z!5e2 ivdtS1~z!, ~A26!

dS1~z!

dt
5@2gp1 i ~vs2vd!#S1~z!

2(
i51

M

s iai
†e2 ivdtS3~z!sin~Kiz!. ~A27!

Since the polarization decay rate is so high, theS1(z) equa-
tion is slaved to the populationS3(z) and the fieldaie

ivdt. So
we adiabatically eliminate this equation by setting
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dS1~z!

dt
50. ~A28!

We also assumegp..vs2vd , which is equivalent to say
ing that the modes that lase are very near the peak of
Lorentzian line shape of the transition. TheS2(z) equation
is similar.

S1~z!52
1

gp
(
i51

M

s iai
†e2 ivdtsin~Kiz!S3~z!, ~A29!

S2~z!52
S3~z!

gp
(
i51

M

s iaie
ivdtsin~Kiz!. ~A30!

We now take theS3(z) equation, substitute the reservoir s
lutions, and perform the Langevin approximations:

dS3~z!

dt
52L22gs@ I1S3~z!#22@S1~z!hs

†~z!

2hs~z!S2~z!#12(
i51

M

s i@S1~z!ai

1ai
†S2~z!#sin~Kiz!. ~A31!

For simplicity, we ignore the noise contribution ter
hs(z). SubstitutingS6(z)e

6 ivdt for S6(z), assumingS3(z)
commutes withai , and ignoring cross terms we have

dS3~z!

dt
52L22gs@ I1S3~z!#2

1

gp
S3~z!

3(
i51

M

s i
2ai

†aisin
2~Kiz!. ~A32!

We substitute inAi and multiply the entire equation byN,
the total number of atoms.

dNS3~z!

dt
52NL22gs@NI1NS3~z!#2

4

gp
NS3~z!

3(
i51

M

s i
2Ai

†Aisin
2~Kiz!. ~A33!

Associating the operatorNS3(z) with the population inver-
sion n(z), we find thatNI must be the density of two leve
systems in the mediumN/L. We also define

t f[~2gs!
21, ~A34!

n̄[FNL

gs
2
N

L G ~A35!

to get

dn~z!

dt
52

1

t f
~n~z!2n̄!2n~z!(

i51

M

4
s i
2

gp
Ai
†Aisin

2~Kiz!,

~A36!

wheret f is the fluorescence decay time of the Nd:YAG m
dium ~240ms! and n̄ is the mean population inversion.
he

-

Now we return to the field equation and substitu
S2(z)e

2 ivdt for S2(z) and take advantage of the orthog
nality condition of the normal modes

E
0

L

sin~Kiz!sin~Kjz!dz5d i j ~A37!

to get

dAi
dt

52g iAi2
2

gg
(

j ,l ,m51

M

k i jk lmAj
†AlAm

12(
j51

M

Aj
†hge

i ~v i1v j !t1h ie
iv i t

1
s i
2

Ngp
E
0

L

sin2~Kiz!n~z!dzAi . ~A38!

We have identifiedn(z) here. At this point we recall that the
number of photons in the cavity is large (109) and treat the
quantum mechanical operatorsAi and Ai

† as if they arec
numbers.

We break the population equation into the compon
normal modes as described in detail in@3#. To do this, we
define a mode gainGi as

Gi5
2us i u2tc
Ngp

E
0

L

n~z!sin2~Kiz!dz, ~A39!

wheretc is the round trip cavity time of the laser~0.2 ns!.
Then

dGi

dt
5
2s i

2tc
Ngp

E
0

LF2
1

t f
@n~z!2n̄#

2n~z!(
j51

M
4us j u2

gp
uAj u2sin2~Kjz!Gsin2~Kiz! dz.

~A40!

We integrate the first two terms on the right hand side a
substitute the pumping power

r i5
s i
2n̄Ltc
Ngp

, ~A41!

dGi

dt
5

1

t f
~r i2Gi !2

2s i
2tc

Ngp
(
j51

M

2
us j u2

gp
Aj u2

3E
0

L

n~z!sin2~Kiz!dz1
2s i

2tc
Ngp

(
j51

M

2
s i
2

gp
uAj u2

3E
0

L

n~z!cos~2Kjz!S 12cos~2Kiz!

2 Ddz. ~A42!

We define the mode coupling constantj i j :

j i j5
*0
Ln~z!cos~2Kjz!@12cos~2Kiz!#dz

*0
Ln~z!@12cos~2Kiz!#dz
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5
*0
Ln~z!cos~2Kjz!@12cos~2Kiz!#dz

2Gi~Ngp/2s i
2tc!

~A43!

This coefficient is truly a constant ifn~z,t! factors into sepa-
rate time and space dependent components; this is proba
good assumption for a standing wave cavity. Thus

dGi

dt
5

1

t f
~r i2Gi !2Gi(

j51

M
2us j u2

gp
uAj u2

1Gi(
j51

M
2us j u2

gp
uAj u2j i j ~A44!

5
1

t f
Fr i2GiS 11(

j51

M

b i j8 uAj u2D G ,
~A45!

where

b i j8 5
2s i

2

gp
t f~12j i j !. ~A46!

The field equation is simplified.

dAi
dt

5S Gi

2tc
2g i DAi2

2

gg
(

j ,l ,m51

M

k i jk lmAj
†AlAm

12(
j51

M

k jAj
†hge

i ~v i1v j !t1h ie
iv i t. ~A47!

We rescale the field equation so that it has measurable u
We define the electric fieldE so that I5uEu2 has units of
watts. That is,
,

.

f,

A

h

a

y a

its.

uEi u25uAi u2
\vd

tc
~A48!

sinceuAi u2 is simply the number of photons in modei . We
also substitutea i52g itc and assume thek i j are real:

dEi
dt

5
1

2tc
F ~Gi2a i !Ei2

4tc
2

\vdgg
(

j ,l ,m51

M

k i jk lmEj*ElEmG
12(

j51

M

k i j Ej*hge
i ~v i1v j !t1A\vd

tc
h ie

iv i t . ~A49!

Now we definek and z i j so thatkz i j5k i j and z i j is
unitless and of order unity and define

e5
4tc

2k2

\vdgg
, ~A50!

which has units of inverse watts. We also define

b i j5b i j8
\vd

tc
5
2us i u2\vdt f

gptc
~12j i j ! ~A51!

which has units of inverse watts. The resulting equations

dEi
dt

5
1

2tc
F ~Gi2a i !Ei2e (

j ,k,l51

M

z i j z lmEj*ElEmG
12k(

j51

M

z i j Ej*hge
i ~v i1v j !t1A\vd

tc
h ie

iv i t,

~A52!

dGi

dt
5
1

t f
Fr i2GiS 11(

j51

M

b i j uEj u2D G . ~A53!
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